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Abstract. The integrated approach is a classifier established on statistical 
estimator and artificial neural network. This consists of preliminary data 
whitening transformation which provides good starting weight vector, and 
fast training of single layer perceptron (SLP). If sample size is extremely 
small in comparison with dimensionality, this approach could be ineffective. 
In the present paper, we consider joint utilization of structures and 
conventional regularization techniques of sample covariance matrices in 
order to improve recognition performance in very difficult case where 
dimensionality and sample size do not differ essentially. The techniques 
considered reduce a number of parameters estimated from training set. We 
applied our methodology to handwritten Japanese character recognition and 
found that combination of the integrated approach, conventional 
regularization and various structurization methods of covariance matrix 
outperform other methods including optimized Regularized Discriminant 
Analysis (RDA). 

1 Introduction 

One of characteristic elements of modern pattern classification tasks is extremely 
large number of features that are of the similar origin. An example is classification 
of handwritten Japanese characters. Since the features are mutually correlated, one 
cannot ignore the correlations for designing the pattern classification algorithm. To 
reduce complexity/sample size problems, one needs to structurize covariance matrix 
(CM), i.e. describe it by small number of parameters. Two decades ago such 
approach has been used for classification of time series [1, 2], 2D remote sensing 
image classification [3-7]. Structurization approach has been utilized also in 
recognition of handwritten Japanese characters, too. 

In many real world problems, distributions density functions of single features 
have clear deviation from Gaussian law. Promising way to solve such pattern 
recognition tasks is utilization of artificial neural networks based methods which 
do not require assumptions about type of distribution density functions of input 
features. In case of successful training, often one obtains good results. There are 
two main difficulties to apply such methods. First, results obtained depend on 
initial conditions (weight vector). Secondly, if input features are highly correlated, 



in high-dimensional situations the data becomes almost singular. This makes 
training become very slow. 

A way to diminish the perceptron initialization problem and singularity of the 
data is the integrated approach of statistical and neural networks based methods 
[8-10]. Instead of using statistical estimate of CM to design the statistical classifier 
(denoted by CLs), we use CM for data whitening transformation. In subsequent 
training of SLP, this strategy leads classifier CLs just after the first bach-mode 
training with zero valued initial weight in the transformed feature space. 

If the assumption of structure of the CM is truth and sample size/complexity 
relationship is sufficiently high, we have a good start to train the perceptron 
further. Good initialization leads to high-quality result if one stops training in a 
right moment [11]. Moreover, data whitening speeds up training process. 

The integrated approach has been derived with the assumption that CM’s of 
both classes are the same. This approach could be ineffective because of unequal 
CM’s. It also could be ineffective when the assumptions of the structures of the 
CM are far from reality, due to use of wrong covariance structures or use of 
unreliable estimates which are calculated from small samples for the 
dimensionality. To improve effectiveness of the integrated approach, one can 
introduce additional regularization of the CM. An objective of the present paper is 
to investigate joint application of the CM regularization, standard and special CM 
structures designed for 2D spatial image recognition to the integrated approach for 
discrimination of handwritten characters. We performed experiments with similar 
pairs of Japanese characters (Fig. 1), however, our methodology is not application 
specific. 

 
 

 
Fig. 1. Fourteen pairs of similar Japanese characters. 

The standard CM structures are widely used structures, and the special ones are 
prepared with taking into account nature of feature vectors of 2D images: distant 
pixels in the 2D image have less important correlations. The covariance matrices of 
similar classes are expected to be similar as well as the postulated correlations 
structures be truthful. We performed our investigation of 2 class discrimination in 
very difficult condition where the number of sum of sample sizes, n=N1+N2, and 
dimensionality, p, are approximately equal. Ni is training sample size of class i. 

2 Integrated Approach of Statistical Estimators and Artificial 
Neural Networks 

2.1 Standard Fisher Linear Discriminant Function 

The standard Fisher linear discriminant function is the most important rule to 
classify two categories, and offered the opportunity to give birth to the integrated 



approach. Suppose both pattern classes share a common covariance matrix. Denote 
the pooled sample covariance matrix by S and the sample mean vectors of two 
classes by (1)x and ( 2) .x  Then, allocation of a p-variate vector 1( , , )T

px x=x  
is performed according to a sign of discriminant function (DF) 

( ) ( )( ) ( )(1) (2) 1 (1) (2)1

2

T

g −= − + −Sx x x x x x . (1) 

Instead of S, a “better” (simplified) estimate of the covariance matrix (say SS ) 
could convert DF (1) into (another) statistical classifier CLs with possibly 
enhanced small sample properties. 

2.2 Integrated Approach 

In the integrated approach, the learning process consists of two stages: data 
whitening transformation by statistically estimated CM, and subsequent learning of 
SLP. Recognition is performed with trained SLP in transformed space. 

Preliminarily, all the samples (including test ones) are moved so that the mean 
of the training set becomes at the origin of the coordinate (i.e., (1) ( 2) 0+ =x x ). 

Data whitening transformation 
LetΛ andΦ be the eigenvalues matrix and eigenvectors matrix of sample estimate 
of simplified covariance matrix SS , i.e., S .T=S ΦΛΦ  All the test and training 

samples are transformed by 
1

2 T−= Λ Φy x . This transformation makes zero valued 
weights be good initial ones for subsequent learning of SLP. 

Learning of SLP 
Let the initial weight be zero vector. Then, the perceptron is trained by gradient 
descent method. After the first batch iteration, we obtain discriminant 
function ( ) ( )( ) ( )(1) (2) (1) (2)1

2 E ,
T

g k= − + −y y y y y y  where (1)y and ( 2)y are the 

sample mean vectors in the transformed space, and Ek  is a scalar constant. This 

DF is equal to transformed DF (1), i.e. ( ) ( )( ) ( )(1) (2) (1) (2)1
2 .

T
g = − + −y y y y y y  

The data whitening transformation gives good initial weights for training of SLP as 
long as the both classes share common CM and the distributions are 
well-estimated. For more details, see book [10]. Theoretically and practically, in 
subsequent training, SLP outperforms Fisher classifier if samples are 
non-Gaussian. 



3 Structurized and Regularized Estimates of Covariance Matrix 

In our research work, nine kinds of covariance matrix models are used (Fig. 4). 
First of all, three models without clear structurization of CM were considered. 
They are statistical estimators rather than structurization methods. Model FULL 
use regularized pooled CM FULL .=S S  In model FULL, we consider all p(p-1)/2 
correlations (off-diagonal elements of CM). Model NO uses identity matrix. Note 
all CM models in this section become NO when 0 1.λ =  Model SQDF is a method 
which bases statistical classifier SQDF [12]. Unlike to other models, 
class-dependent CM’s are separately calculated and then pooled. Small eigenvalues 
of each CM are replaced by a constant. The constant is estimated by the maximum 
likelihood estimation. Here, the number of eigenvalues which are not constant is 5. 

Based on the assumption that most correlations between distant pixels are low, 
three types of fixed structure models specialized for feature vectors of 2D image 
were used (see the description for the feature vector at the very beginning of 
Section 4). The fixed structure models used block-diagonal CM: 49B4 has 49 
independent 4× 4 blocks, 4B49 has 4 blocks of size 49×49, and 4B&49B covers 
both regions of 49B4 and 4B49. Because both 49B4 and 4B49 are rather restrictive 
ones, less restrictive and more sophisticated model, 4B&49B, is designed. 

In addition to fixed structure models, we investigated three adaptive structured 
models. As a “dumb” model, we employ LARG, where much smaller correlations 
of CM are ignored so that the CM becomes close to diagonal. The second one is 
standard first-order tree dependence model TREE1 [8, 9]. Here, it is postulated 
that each feature depends only on one other feature. Therefore, an inverse of the 
matrix , ( ) 1

TREE1
−S , however, has 2p-1 non-zero elements. In general case, 

however, the inverse of non-structurized CM has p×p non-zero elements. In the 
previous research studies [9], most often this model appeared as a best one in 
moderate sample size situations. The last one is EBD which block-diagonalizes 
CM after exchanging elements of the matrix in order that sub-covariance matrices 
contain larger elements [13]. 14 is used for the number of sub-matrices. 

In the earlier stage of the investigation, we also considered scaled rotation 
regularization [10, 14]. In experiments with 196-dimensional data and relatively 
small learning sets (100 samples), this regularization method was too complex and 
ineffective. 

If the number of training samples is too small, stucturized estimate of CM, S,S  
is unreliable. For more reliable estimation, we are obliged to introduce additional 
regularization, i.e. S&RDA S(1 ) ,λ λ= − +S S I  where λ is a parameter for 
regularization. If 0,λ = we have no regularization. If 1,λ = we have no 
structurization (case NO). Intermediate values of parameter λ could improve 
accuracy of determination of the weight vector obtained after the first batch 
iteration. Because good initial weight vector leads good result if training would be 
stopped in a right moment, proper additional regularization should assist in 
reducing generalization error. 

Note, if regularization is applied to conventional sample estimate of CM (in case 
of FULL), in dependence on number of iterations we have RDA 



( RDA (1 ) ,λ λ= − +S S I ) with different λ (e.g., see Eq.(4.9) in [10]). RDA is known 
as one of the best classification methods in statistical pattern recognition. 

4 Experiments 

In the experiments, 196-dimensional directional element feature [15] was used to 
represent handwritten Japanese characters in database ETL9B. Preliminary to 
extracting the feature vector, a character image was normalized nonlinearly [16] to 
fit in a 64×64 box. Then, skeleton were extracted, and line segments of vertical, 
horizontal and slanted at ±45 degrees were extracted. An image is divided into 49 
sub-areas of 16×16 dots (see Fig.3). Sum of each segment in a region is an element 
of feature vector. 
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Fig. 2. 49 sub-areas of feature vector. 

Our purpose is to investigate potential possibilities of each of pattern 
classification method (strategy) in very difficult case where training set size 
n=N1+N2≈ p. Therefore, for 196-dimensional feature vector, we considered N = N1= 
N2 = 30, 50, 100, 150. This is a really critical situation of small sample/high 
dimensionality problem. In each experiment, we used test sets to find optimal 
regularization parameter which achieves minimum error rate. Each time we 
permuted 200 vectors in each pattern class. In each category, N samples were 
selected for training and remaining 200-N ones were for testing. 

Preliminary experiments demonstrated that test error estimates depend on value 
λ notably. Optimal values of λ depend on CM structurization method, training 
set size and also on random split of data into training and test sets. In Fig. 3a, we 
present typical histogram of distribution in 250 experiments for model Tree1. In 
Fig. 3b, we have generalization errors as function ofλ  for five CM structurization 
methods (RDA, FULL, 4B&49B and Tree1) calculated from 250 experiments. 

We analysed bivariate distributions of optimal values in Fig.3a. We found there 
is no or very small correlations between two distinct CM models considered. This 
means for each CM structurization model, one needs utilize its own (best) value of 
λ . Accordingly, optimal λ  is CM structurization method dependent. For this 
reason, for each pair and CM structurization method for all handwritten character 
pairs in Fig.1 (named as A to N from upper left pair), we performed ten 
preliminary experiments to evaluate approximately a fixed value of optimal λ  to 
be used in the main experiments. 



Average results obtained in 100 experiments for character pairs are presented in 
Table 1. We see that joint utilization of prior information in form of postulated 
structure and additional regularization of CM are useful even when parameterλ is 
determined approximately. We found that there is no single CM structure best for 
all handprinted character pairs. Most often, fixed structure models such as 49B4, 
4B49 and 4B&49B were the best. In several cases, statistical structure models such 
as Tree1 and SQDF outperformed the fixed structure models. 

Experiments with different training set sizes are shown in Table 2. This also 
confirmed usefulness of joint utilization of the CM structurization and 
regularization. The generalization error decreases uniformly with training set size 
N. The best two CM structurization models do not change with an increase in 
training set size. 
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(a) Distribution of optimal λ          (b) Generalization errors as function of λ  

Fig. 3. Optimal λ and generalization errors (Pair M, N=100, in 250 experiments): (a) 
distribution of optimal regularization parameter λ  for model Tree1, and (b) generalization 
errors as functions of λ  for RDA, FULL, 4B&49B and Tree1. 

Table 1. Average generalization errors for different character pairs of FULL, and relative 
ratios of generalization error of each method to generalization error of FULL (right 9 
columns). The very last rows in the table are average values of the column. 

Pair FULL NO SQDF 49B4 4B49 4B&49B LARG TREE1 EBD RDA 

A 0.1955 0.9974 0.9514 0.9974 1 1.0051 0.9949 0.9923 0.9974 1.0691 
B 0.1475 1.0034 0.9695 0.9864 0.9966 0.9831 1.0102 0.9322 1.0034 1.0508 
C 0.0900 1.0056 1 0.9944 1 1 0.9944 0.9889 1.0056 1.1556 
D 0.1405 0.9929 1.0036 0.9893 0.9893 0.9893 1.0071 1.0036 0.9929 1.0747 
E 0.1465 1.0034 1.0137 1 1.0102 1.0068 1.0171 1.0068 0.9863 1.0819 
F 0.0410 1.0366 0.9390 1.0244 0.9634 0.9756 0.9634 0.9756 1.0122 1.0854 
G 0.0690 1.0290 0.9783 1.0290 1 1.0072 1.0145 1 1.0217 1.0217 
H 0.0810 1.0556 1.0309 1.0556 0.9506 0.9815 1.0556 0.9753 1.0617 1.0864 
I 0.1515 1.0033 1.0033 0.9967 0.8515 0.8746 0.967 0.9703 0.9934 1.0627 
J 0.0725 1.0138 0.9862 0.9034 0.9862 0.9241 0.9724 1.0069 1.0138 1.0828 
K 0.0950 0.9895 0.9842 0.9368 0.9579 0.9211 0.9211 0.9158 0.9632 1.0368 
L 0.0785 1.0191 0.9554 1.0191 1.0127 1.0127 1.0255 1.0127 0.9873 1.1274 
M 0.0640 1.0391 1.0156 1.0078 0.9531 0.9531 0.8828 0.7891 1.0313 1.1172 
N 0.0450 1.0111 0.9889 0.9778 1 1 1.0111 1.0111 0.9889 1.0667 

Mean 0.1012 1.0143 0.9871 0.9942 0.9765 0.9739 0.9884 0.9700 1.0042 1.0799 



Table 2. Average generalization errors for different training set sizes, N, and diverse CM 
structurization methods (Pair M). 

N FULL NO SQDF 49B4 4B49 4B&49B LARG TREE1 EBD RDA 

30 0.1151 0.1145 0.1146 0.1118 0.1089 0.1052 0.1116 0.0965 0.1145 0.1250 
50 0.0895 0.0902 0.0914 0.0883 0.0846 0.0820 0.0865 0.0769 0.0904 0.0980 

100 0.0624 0.0646 0.0658 0.0633 0.0595 0.0582 0.0614 0.0565 0.0648 0.0691 
150 0.0537 0.0543 0.0549 0.0515 0.0491 0.0487 0.0490 0.0452 0.0550 0.0608 

5 Concluding remarks 

In the current paper, we considered performance of the integrated approach of 
statistical estimators and neural networks. The main purpose is to investigate 
potential possibilities of this approach combined with various strategies under very 
difficult condition where the number of sum of training vectors is almost 
dimensionality. We used similar pairs of handwritten Japanese characters. This 
aggravates more difficult situation. 

The strategies we used were 1) utilization of prior information in form of 
postulated structure of covariance matrix; 2) regularization of CM; 3) solution of 
the perceptron is regularized by early stopping before a minimum of the cost 
function. As prior information, nine kinds of structurization methods (models) 
were used. They also could be grouped as statistical models, fixed structure ones 
and adaptive structure ones. Fixed structure models are designed for feature vector 
of 2D spatial image. Regularization of CM directly improves data transformation 
which gives initialization of the perceptron. The number of learning steps of SLP 
decides complexity of pattern classification algorithm, too. 

In experiments, utilization of structure models allowed us to reduce 
generalization error for most of the character pairs. For all 14 character pairs 
considered, error of “the best method” was on average 1.15 times smaller in 
comparison with the optimized regularized discriminant analysis. It was 1.05 times 
smaller than that of SLP with regularized maximum likelihood covariance matrix 
(model FULL) utilized for preliminary data transformation. Results of our research 
pointed out that joint utilization of structurization and conventional regularization 
of CM has a potential to improve efficacy of the integrated approach in designing 
pattern classifiers. The experiments show no structure is the best for all pairs. 
Therefore, the best structure and regularization parameter have to be selected for 
each pair and sample size respectively. 

All three regularization techniques are acting simultaneously in the same 
directions. Thus, each of them can influence (reduce) effectiveness of other two. 
The effects of CM structures were also aggravated by the fact that most of 
distributions of the input features are highly asymmetric or bimodal, i.e. 
assumptions about Gaussian distributions were violated markedly [17]. In future 
research, the effects of factors aggravating positive effects have to be considered in 
detail. Practical techniques to select proper values of regularization parameters and 
optimal iteration should be developed. 



Acknowledgments 

The authors thank Assoc. Prof. Shinichiro Omachi, Prof. Hirotomo Aso, Dr. Ausra 
Saudargiene and Giedrius Misiukas for useful discussions, shared with us data sets 
and Matlab codes. 

References 

1. D. Morgera, D.B. Cooper. Structurized estimation: Sample size reduction for adaptive 
pattern classification. IEEE Trans. Information Theory, 23:728-741,1977. 

2. V. Kligys. On the classification of multivariate Markov sequences. Statistical Problems of 
Control, Inst. of Math. and Cyb. Press, Vilnius, (S. Raudys, ed.), 50:57-75, 1981 (in 
Russian). 

3. D.A. Landgrebe. The development of a spectral-spatial classifier for earth observational 
data. Pattern Recognition, Vol. 12:185-175, 1980. 

4. D. Morgera. Linear, structured covariance estimation: An application to pattern 
classification for remote sensing. Pattern Recognition Letters, 4(1): 1-7, 1986. 

5. G. Palubinskas. Spatial image recognition. Statistical Problems of Control, Inst. of Math. 
and Cyb. Press, Vilnius, (S. Raudys, ed.), 74:104-113, 1986 (in Russian). 

6. G. Palubinskas. A comparative study of decision making algorithms in images modeled 
by Gaussian random fields. Int. J. of Pattern Recognition and Artificial Intelligence. Vol. 
2(4):621-639, 1988. 

7. G. Palubinskas. A review of spatial image recognition methods. Statistical Problems of 
Control, Inst. of Math. and Cyb. Press, Vilnius, (Raudys S., ed.), 93:215-231, 1990 (in 
Russian). 

8. S. Raudys, A. Saudargiene. Structures of the covariance matrices in the classifier design. 
Lecture Notes in Computer Science, Springer-Verlag, 1451:583−592, 1998. 

9. S. Raudys, A. Saudargiene. Tree type dependency model and sample size - dimensionality 
properties. IEEE Trans. on Pattern Analysis and Machine Intelligence 23(2):233-239, 
2001. 

10. S. Raudys. Statistical and Neural Classifiers: An integrated approach to design. 
Springer, NY, 2001. 

11. S. Raudys, S. Amari. Effect of initial values in simple perception. Proceedings 1998 
IEEE World Congress on Computational Intelligence, IJCNN’98, 1530-1535, 1998. 

12. S. Omachi, F. Sun, H. Aso. A new approximation method of the quadratic discriminant 
function. Lecture Notes in Computer Science, 1876: 601-610, 2000. 

13. F. Sun, S. Omachi, N. Kato, H. Aso, S. Kono, T. Takagi. Two-stage computational cost 
reduction algorithm based on Mahalanobis distance approximations. Proceedings 15th 
Int. Conf. on Pattern Recognition (ICPR2000), IEEE Press, 2:700-703, 2000. 

14. S. Raudys. Scaled rotation regularization. Pattern Recognition 33:1989−1998, 2000. 
15. N. Sun, Y. Uchiyama, H. Ichimura, H. Aso, M. Kimura: Intelligent recognition of 

characters using associative matching technique. Proc. Pacific Rim Int'l Conf. Artificial 
Intelligence (PRICAI'90), 546-551, 1990. 

16. H. Yamada, K. Yamamoto, T. Saito. A nonlinear normalization method for handprinted 
kanji character recognition - line density equalization. Pattern Recognition, 
23(9):1023-1029, 1990. 

17. S. Raudys, M. Iwamura. Multiple classifiers system for reducing influences of atypical 
observations. Lecture Notes in Computer Science (Proceedings of Multiple Classification 
Systems; MCS 2004). 



20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

    20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

 
(a) FULL          (b) SQDF 
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(c) 49B4          (d) 4B49 
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(e) 4B&49B          (f) LARG 
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(g) TREE1         (h)EBD 

Fig. 4. Elements of structurized covariance matrices except model NO. Darker pixel stands 
for larger absolute value. 


