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Abstract. Atypical observations, which are called outliers, are one of 
difficulties to apply standard Gaussian density based pattern classification 
methods. Large number of outliers makes distribution densities of input 
features multimodal. The problem becomes especially challenging in high-
dimensional feature space. To tackle atypical observations, we propose 
multiple classifiers systems (MCSs) whose base classifiers have different 
representations of the original feature by transformations. This enables to 
deal with outliers in different ways. As the base classifier, we employ the 
integrated approach of statistical and neural networks. This consists of data 
whitening and training of single layer perceptron (SLP). Data whitening 
makes marginal distributions close to unimodal, and SLP is robust to 
outliers. Various kinds of combination strategies of the base classifiers 
achieved reduction of generalization error in comparison with the 
benchmark method, the regularized discriminant analysis (RDA). 

1 Introduction 

In many real-world practical pattern recognition tasks including printed and 
handwritten character recognition, we often meet atypical observations, and also 
meet the classification problem of such observations with Gaussian classifiers. 
Outliers are the observations which follow another distribution. If the number of 
outliers is large, the distributions could be multimodal ones. Applying Gaussian 
model to multimodal distribution produces many outliers. 

To deal with multimodal distributions, nonparametric (local) pattern recognition 
methods such as k-NN rule and Parzen window classifier could be used because 
they approach the Bayes classifier with large training samples. However, in high-
dimensional and small sample cases, sample size/complexity ratio becomes low. In 
such situations, utilization of nonparametric methods is problematic [1-3]. 

To reduce influences of atypical observations, we suggest multiple classifier 
systems (MCSs) whose several base classifiers have different representations of the 
original feature. We perform different transformations of the original feature 
(including no transformation) in order to deal with outliers in different ways. 

As the base classifier, we employ the integrated approach of statistical and 
neural networks. This approach is the combination of data whitening and training 



of single layer perceptron (SLP) to recognize patterns. In data whitening, we also 
perform data rotation to achieve good start, speed up the SLP training, and obtain 
new features whose marginal distribution densities are close to unimodal ones and 
often resemble Gaussian distribution. In one base classifier, for data rotation we 
utilized robust estimates of mean vectors and pooled covariance matrix. The SLP 
based classifier is inherently robust to outliers. 

We considered various kinds of combination strategies of the base classifiers 
including linear and non-linear fusion rules.  We compare their performances with 
the regularized discriminant analysis (RDA) [2-4] as a benchmark method. RDA is 
one of the most powerful statistical pattern classification methods. 

To test our theoretical suggestions, we considered important task of recognition 
of handwritten Japanese characters. In handwritten Japanese character recognition, 
some of the classes can be easily discriminated. However, there are many very 
similar classes, and recognition of such similar classes is important but difficult 
problem. To improve this situation, our concern is to study most ambiguous pairs 
of pattern classes. For illustration, eight pairs of similar Japanese characters are 
shown in Fig. 1. 

 

 

Fig. 1. Eight pairs of similar Japanese characters. 

2. Sample Size/Complexity Properties 

The standard Fisher discriminant function (we call “discriminant function” DF in 
short) is one of the most popular decision rules. Let (1)x  and ( 2)x be sample mean 
vectors, and S be pooled sample covariance matrix. Allocation of a p-variate vector 

( )1, , T
px x=x is performed according to sign of DF [2] 
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Let N be the number of training sets which are used to obtain estimates (1) ,x  
( 2)x and S. Asymptotic classification error of sample based DF is given 

as ( )1
2B = ,P δΦ − where δ stands for Mahalanobis distance and ( )Φ ⋅ is cumulative 

distribution function of ( )N 0,1  (see, e.g., [2]). As both sample size N and 
dimensionality p increase, distribution of sample based DF approaches Gaussian 
law. After calculation of conditional means and common variance of discriminant 
function (1), one can find expected probability of misclassification, 
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[3, 5]. In Eq. (2), term ( )2 2N N p−  arises due to inexact estimation of covariance 

matrix, and term 21 2 p N+ δ arises due to inexact estimation of mean vectors. 
Equation (1) will be Euclidean distance classifier (EDC) if covariance matrix S is 
ignored. EDC has relatively good small sample properties. Similarly, if covariance 
matrix S is described by small number of parameters, DF with better small sample 
properties could be obtained. An example is the first order decision tree model 
described in Sect. 4 (see, e.g., [3, 6]). An alternative way to improve small sample 
properties is RDA. Covariance matrix of RDA is given as ( )RDA 1 ,λ λ= − +S S I  
where λ  is positive constant defined in an interval [0 1]. Optimal value of λ , 
denoted by optλ , have to be chosen by taking into account the balance between 
complexity of pattern recognition task (structure of the true covariance matrix Σ) 
and sample size N. 

In our investigations, sample size N=100 and the original dimensionality p=196. 
Suppose Bayes error B 0.1P = ( 2.56).δ = Then 21 2 1.6p Nδ+ ≈  and 

( )2 2 800.N N - p ≈ High values of these coefficients indicate that we work in 
serious deficit of training data. One way to improve the data deficit problem is to 
reduce dimensionality, i.e. perform feature selection. Another way is to use simpler 
estimate of covariance matrix. We will use both of them. They are described in 
Sect. 3 and 4. 

3 Representations of Feature Vectors 

3.1 The Original Feature Vector 

In this paper, 196-dimensional directional element feature [7] was used to represent 
handwritten Japanese characters in database ETL9B [8]. Preliminary to extracting 
the feature vector, a character image was normalized nonlinearly [9] to fit in a 
64×64 box. Then, skeleton were extracted, and line segments of vertical, horizontal 
and slanted at ±45 degrees were extracted. An image is divided into 49 sub-areas 
of 16×16 dots. Sum of each segment in a region is an element of feature vector. 

3.2 Three Representations of Feature Vector 

In constructing three base classifiers for multiple classifier system, we performed 
three kinds of transformations of the feature vector:  

A) original (without transformation),  
B) transformed by 

1
s

r ry x=  for r-th element of the feature (r = 1, …, 196, s is 
arbitrary) and 

C) binarized (0 or 1) (non-zero valued components of the feature vector were 
equalized to 1). 



We comment the reasons of using feature B and C. In Fig. 2a, we have a 
histogram of an element of the feature vector, which corresponds to the sub-area at 
a boundary of an image. The distribution density is highly asymmetric. It is well 
known that estimation of covariance matrix requires Gaussian density [10], and 
nonlinear transformations such as transformation (B) often helps reveal correlation 
structure of the data better. Thus, the histogram of nonlinearly transformed by 

1
4

r ry x=  is performed (Fig. 2b). We notice that the distribution of single feature is 
obviously bimodal and one peak is at zero. One possible way to tackle bimodality 
problem is to ignore “outliers” (in our case “zero valued features”). As mentioned 
in Sect. 3.3, our dimensionality reduction strategy has similar effect to this for 
feature B. However, the deletion may cause loss of information. Therefore, the 
third expert classifier utilized binary vectors. 
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(a) Original measurement.                             (b) After transformation by 

1
4 .r ry x=  

 
 

Fig. 2. Histograms of distribution of 5th feature, x5. 

3.3 Dimensionality Reduction 

When the number of training vectors is unlimitedly large, local pattern recognition 
algorithms (such as Parzen window classifier and k-NN rule) could lead to minimal 
(Bayes) classification error if properly used. Unfortunately, in practice, the number 
of training vectors is limited, and the dimensionality of feature vector is usually 
high. Therefore, one needs utilize prior information available to build the 
classification rule. An optimal balance between complexity and training sample 
size has to be retained. If sample size is not very large, one has to restrict 
complexity of base classifiers. In small sample case, optimistically biased 
resubstitution error estimates of the base classifiers supplied to fusion rule designer 
could ruin performance of MCS [11]. 

When we have notably smaller coefficient in Eq. (2), i.e. for 

dimensionality 20,p∗ =  21 2 * 1.06.p N+ δ ≈  In order to improve small sample 
properties of base classifiers, for each kind of features transformation, we selected 
only twenty “better” features. Selection was performed on bases of sample 
Mahalanobis distances of each original feature. Since sample size was relatively 



small, we could not use complex feature selection strategy. Here, the written 
character occupies only a part of 7×7 area. Like in many of similar character 
recognition problem, some of the sub-areas are almost “empty”. Thus, our feature 
selection strategy is: at first, the r-th elements of 196-dimensional feature vectors 
were divided by their standard deviation of each class rs (r = 1, 2, …, 196); then, 
twenty features (dimensions) whose 1-dimensional sample means of two classes 
are more distant were selected. The experiments showed that this feature selection 
also had important secondary effect: many non-informative features which contain 
a large number of outliers (zero valued measurements) were discarded. 

4 Three Base Classifiers 

Three base classifiers were built in the three feature spaces (A, B, C) respectively. 
To construct robust base classifiers, we utilized the integrated approach of 
statistical and neural network [3]. This approach consists of data whitening and 
training of SLP. This can offer better linear DF by taking advantage of both 
statistical methods and neural networks. 

In the data whitening, one moves data mean vectors to the origin of coordinates, 
and then performs data whitening transformation by use of 

( )( )1
2 (1) (2)1

2 ,T−= − +Λ Φy x x x  where Λ and Φ are the matrices of eigenvalues 

and eigenvectors of simplified covariance matrix RDA&Tree1.S We used regularization 
and the first order tree dependence model [6] for the simplified covariance matrix 

( )RDA&Tree1 Tree1 opt opt1 ,λ λ= − +S S I  where Tree1S is covariance matrix of the first 
order tree dependence model described only by 2p-1 independent parameters. This 
simplification makes the estimate of the covariance matrix more reliable in small 
sample case. Thus, in data whitening, we perform data rotation by means of 
orthogonal matrix Φ  and variance normalization by multiplying rotated data by 
matrix 

1
2 .−Λ  This transformation has a secondary effect which have not been 

discussed in the robust statistics literature. Linear transformation of 
multidimensional data produces weighted sums of the original features (see Fig. 3). 
For this reason, the distribution densities of the new features are closer to univariate 
and unimodal, and often resemble Gaussian distribution. In our experiments we 
noticed that time and again in whitened feature space, the first components give 
good separation of the data. 

After data whitening, SLP was trained in space of y. The training of SLP started 
with zero valued weight vector. After the first batch iteration, we obtain DF (1) 
whose S is replaced by RDA&Tree1.S  If assumptions about structure of covariance 
matrix are truthful, estimate RDA&Tree1S helps to have quite good DF with relatively 
small error rate and good small sample properties just at the very beginning. 

If starting regularization parameter optλ  is suitable, proper stopping could help 
to obtain the classifier of optimal complexity. To determine optimal number of 
batch iterations (epochs) to train SLP, we utilized independent pseudo-validation 
data sets with colored noise injection [12]. The pseudo-validation sets were formed 



by adding many (say n) randomly generated zero mean vectors to each training 
pattern vector. The detail is as follows. For each vector ,ix  its k nearest neighbors 

1 2, , ,i i ikx x x  are found in the same pattern class; then, k lines which connect ix  
and ,iqx (q=1, 2,…, k) are prepared; along the q-th line, one adds random variables 

which follow Gaussian distribution ( )( )2N 0, | | ;i iqσ −x x after adding k 

components, a new artificial vector is obtained. This procedure is repeated n times. 
Three parameters have to be defined to realize a noise injection procedure. In our 
experiments, we used: k = 2, n = 10, andσ = 1. In fact, noise injection introduces 
additional non-formal information: it declares in an inexplicit way that the space 
between nearest vectors of one pattern class could be filled with vectors of the 
same category (for more details see [11, 12]). 
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 (a) Original feature space.                       (b) Whitened feature space. 

 

Fig. 3. Effect of whitening transformation; “*” and “o” stand for feature vectors of two 
classes respectively, which were transformed by 

1
2 .r ry x=  

Second expert, B, was working in transformed by 
1

s
r ry x= feature space where 

bimodality of the data was clearly visible. For robust estimation, an influence of 
outliers was reduced purposefully. We ignored measurements with zero feature 
values for robust estimation of mean vectors and covariance matrix. While 
estimating the mean values and variance of j-th feature, we rejected zero valued 
training observations. To estimate ijρ , a correlation coefficient between i-th and j-
th elements of feature vector, we utilized training vectors with only nonzero i-th 

and j-th components. 

5 Experiments with handwritten Japanese Characters 

5.1 Fusion Rules 

We utilize a number of different fusion rules and compare classification 
performances of MCSs with RDA used as a benchmark method. From an 



abundance of known fusion rules (see, e.g., [13]), eight linear and non-linear rules 
below were considered to make final decision. 

BestT) The best (single) base classifier is selected according to classification 
results using the test set. Actually, this is the ideal classifier which achieves the 
minimum error rates in use of the three base classifiers. This classifier and BestV 
(the next item) are weighted voting MCSs that only one weight is unequal to zero. 

BestV) The best (single) base classifier is selected according to classification 
results using the pseudo-validation set. This classifier was used as a benchmark 
MCS. 

MajV) Majority voting. This is a fixed (non-trainable) fusion rule. 
WStv) Weighed sum of the outputs of the base classifiers. SLP was used as 

fusion rule. The original training data set was used to train SLP classifier and 
produce coefficients of weighted sum. Optimal stopping was performed according 
to classification error estimated from pseudo-validation set. 

BKS) The original behavior knowledge space method (see, e.g., [3, 14]). 
Allocation is performed according to probabilities P11,…,P18, P21,…,P28 of eight 
combinations of binary outputs of three base classifiers; training set were used to 
estimate the probabilities mentioned. 

BKSn) Modified BKS method aimed to reduce expert adaptation to training data 
[11]. An independent pseudo-validation set was used to estimate P11,…,P28. 

G&R) Nonlinear classification in 3D space of the three outputs of the base 
classifiers. To make final allocation, the Parzen window classifier was utilized (this 
MCS utilizes of expert outputs. Its decision making procedure resembles that of 
Giacinto and Roli [15], therefore, it is marked by G&R). 

R&E) Nonlinear fusion of the outputs of the base classifiers where a sample-
based oracle uses the input vector x  in order to decide which expert is the best 
competent to classify this particular vector x. The fusion rule allocates vector x  to 
one of three virtual pattern classes (experts). The competence of the j-th expert is 
estimated as a “potential” 
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where 1s
jlq =  if l-th training vector of s-th class, ( ) ,s

lx  was classified by the j-th 

expert correctly, and 1s
jlq = −  if vector ( )s

lx  was classified incorrectly, { }exp ⋅  is a 
kernel and h  is a smoothing constant. This approach corresponds to Rastrigin and 
Erenstein [16] fusion rule introduced three decades ago. We marked it by R&E. 

RDA) RDA is one of the most powerful pattern classification tools, and was 
described in Sect. 4. 

5.2 Experiment 

Each pair of handwritten character contains two similar classes. Each class consists 
of 200 vectors. 100 vectors were randomly selected as the training set (N=100), 



and remaining 100 vectors were the test set. To reduce an influence of randomness, 
the experiments were performed 100 times for each pair of characters. Every time, 
random permutation of vectors was performed in each category. 

For each data representation, individual feature selection and subsequent data 
rotation and normalization procedures were performed. After few preliminary 
experiments following parameters were determined: *p  = 20, optλ = 0.2, and s = 2. 

In all experiments, only training set and its “product”, artificial pseudo-
validation set described in Sect. 4, were used to design decision making rules. The 
SLPs which were used as the base classifiers were trained on training set. Optimal 
number of iterations was determined by the recognition results of pseudo-
validation set. While building some of trainable fusion rules, we interchanged 
training and pseudo-validations sets: the fusion rules were trained on validation set, 
and optimal number of iterations was found according to error rates of the training 
set. The test set was used only once, for final evaluation of generalization errors. 

Results obtained in 800 training sessions (100 independent experiments with 
eight pairs of similar handwritten Japanese characters) are summarized in Table 1. 
For every pair, averaged test error rates of three experts (1st E, 2nd E and 3rd E), 
BestT and BestV are presented in the left five columns of Table 1 (next to the 

index of character pair). Let BestVP̂  be the averaged test error rate of BestV (printed 
in bold in the table) and Method_AP be that of “Method A”. Further, the ratio of the 
averaged test error rate of “Method A” (corresponding to remaining 6 fusion rules 
and RDA) to that of BestV are shown in the right seven columns of Table 1. 
Namely, the relative error rate is given as Method_A BestV

ˆ .P P  The very last row in the 
table contains averaged values of eight cells of the column. 

Table 1. Average error rates of single experts, BestT and BestV are in the left five columns 
next to index, and relative efficacy of six fusion procedures and RDA are in the seven 
columns in the right. Relative error rates of the most effective fusion rules are underlined. 

 

PAIR 1st E 2nd E 3rd E BestT BestV MVot WSum BKS BKSn G&R R&E RDA 
A 0.037 0.037 0.042 0.035 0.042 0.882 0.899 1.022 0.930 1.239 0.911 1.349 
B 0.129 0.116 0.198 0.112 0.122 0.946 1.012 1.039 0.946 1.090 1.008 1.385 
C 0.056 0.070 0.159 0.054 0.066 1.002 0.964 0.923 1.002 0.955 0.841 1.115 
D 0.138 0.139 0.154 0.132 0.144 0.950 0.981 1.051 1.018 1.042 0.972 1.453 
E 0.087 0.083 0.133 0.079 0.103 0.805 0.810 0.865 0.823 0.819 0.842 1.261 
F 0.135 0.130 0.190 0.125 0.138 0.920 0.962 0.996 0.921 0.986 0.972 1.575 
G 0.086 0.088 0.100 0.081 0.091 0.940 0.940 0.948 0.941 0.955 0.968 1.675 
H 0.120 0.119 0.149 0.112 0.125 0.899 0.923 0.960 0.899 0.943 0.967 1.410 

ALL 0.098 0.098 0.141 0.091 0.104 0.918 0.936 0.976 0.935 1.004 0.935 1.403 
 
In spite of apparent similarity of eight kinds of Japanese character pairs, we 

have notable variations in experimental results obtained for diverse pairs: both 
separability of pattern classes (classification error rate) and relative efficacy of the 
experts differ by pairs. 



Nevertheless, for all the pairs, RDA whose parameter λ is adjusted to 
complexity of the recognition problem and size of training set was outperformed 
by MCSs designed to deal with outliers and multimodality problems. By 
comparing RDA and MCS rules, the highest gain among MCS rules (1.675 times 
in comparison with BestV, and 1.78 times in comparison with Majority Voting) 
was obtained for pair G where all three experts were approximately equally 
qualified. The lowest gain (1.115 times in comparison with BestV, and 1.325 times 
in comparison with Rastrigin-Erenstein procedure) was obtained for pair C where 
the third expert was notably worse than two others. 

The training set size of the current problem, 100+100 vectors in 196-variate, is 
rather small. Therefore, sophisticated trainable fusion rules were ineffective: for 
almost all eight Japanese character pairs considered, the fixed fusion rule, Majority 
Voting, was the best. Exception is pair C because of inefficiency of the third 
expert, that is, only two experts participated in final decision making. Detailed 
analysis shows that in general, all three experts are useful: rejection of one of them 
assists an increase in generalization error of MCS. 

6 Concluding Remarks 

In this paper, we considered problem of atypical observations in training set in 
high-dimensional situations where sample size is relatively small. Since Gaussian 
classifiers are not suitable for atypical observations, as a practical solution, we 
proposed multiple classifiers systems (MCSs) whose base classifiers have different 
data representations respectively. The base classifiers are constructed with the 
integrated approach of statistical and neural networks. 

To test the proposed MCSs, we considered recognition task of similar pairs of 
handwritten Japanese characters. For all eight similar Japanese character pairs 
considered, all the proposed MCSs outperformed the benchmark classification 
method, the RDA, in the situation of small sample and high-dimensional problem. 
Utilization of MCSs with base classifiers working in differently transformed 
feature space contains supplementary information that nonlinear transformations 
are important in revealing atypical observations. Dealing with the outlier problem, 
dissimilarity of features allowed the MCSs to reduce generalization error. 

With a simple feature selection procedure, all three base classifiers worked in 
reduced feature spaces. The feature selection procedure utilizes additional 
information: a part of the features are notably less important for the linear 
classification rules designed to operate with unimodal distributions. Analysis of 
histograms of rejected features showed that often rejected features had bimodal 
distribution density functions, i.e. substantial part of data contained zero-valued 
measurements. This means that our feature selection lightened outliers and 
multimodality problem. 

Training sample size used to train the experts and the trainable fusion rules of 
MCSs is too small for given high-dimensional pattern recognition problem. 
Therefore, fixed fusion rule performed the best. No doubt that in situations with 
larger number of samples, more sophisticated fusion rules would be preferable and 
could lead higher gain in dealing with outlier and multimodality problems. 
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