
A Quantum Algorithm for Finding k-Minima

Kohei Miyamoto1 ∗ Masakazu Iwamura1 † Koichi Kise1 ‡

1 Department of Computer Science and Intelligent Systems, Graduate School of Engineering, Osaka Prefecture
University

Abstract. We propose a new finding k-minima algorithm and prove that the query complexity is
O(
√
kN), where N is the number of data indices. The primary difficulty of the problem is that it requires

to return k answers. For the problem, an extension of the Amplitude Amplification (we call it searching

all marked k indices algorithm) finds all k data with the query complexity of O(
√
kN) if an appropriate

threshold is given. We give a quantum algorithm that searches a good threshold with the complexity of
O(
√
N log k). In addition, we briefly prove the query complexity of the searching all marked k-indices

algorithm, which is not well discussed so far. Our algorithm can be directly adapted to distance-related
problems like k-Nearest Neighbor Search, clustering and classification.

The full version of the paper is followed by the extended abstract.

Keywords: Amplitude Amplification, Finding Minimum, Finding k-Minima

1 Introduction

Finding k-minima, which finds the k smallest data
from N data indices, is an important problem, as it can
be applied to k-nearest neighbor search like [1] and other
quantum machine learning methods such as clustering
and classification [2–5]. These machine learning meth-
ods are very important for analyzing big data. If the
power of the quantum computer adapts to big data, big
data that is hard to calculate on the classical computer
can be analyzed.

The primary difficulty of the problem is that it requires
to return k answers. Many quantum algorithms do not
directly return multiple answers because the measure-
ment of quantum states collapses the state of superposi-
tion. In a naive way, many trials are required to obtain all
the results, which increases the computational cost lin-
early for the number of results. That is, O(k) trials are
required for k results. It spoils the advantage of quantum
algorithms.

In the problem, Dürr, et al. have proposed anO(
√
kN)

quantum algorithm for finding k-minima [6], where N is
the number of data indices. However, it has some draw-
backs. As the algorithm is developed for some graph
problems, it is complex to adapt for the finding k-minima
problem. In addition, a part of the algorithm is uncer-
tain.

Hence, we propose a new finding k-minima algorithm
and prove that the query complexity isO(

√
kN). Though

the proposed algorithm has the same query complexity
as the one proposed by Dürr et al. [6], the proposed is
free from the issues the existing method has. The pro-
posed algorithm is based on following three algorithms:
finding minimum (FM) algorithm [7], quantum count-
ing (QC) algorithm [8, 9] and Amplitude Amplification
(AA) [9–11]. The main idea of our algorithm is to find a
good threshold for indices and find all indices that have
less values than the value of the threshold index. FM

∗miyamotokohei@protonmail.com
†masa@cs.osakafu-u.ac.jp
‡kise@cs.osakafu-u.ac.jp

algorithm and QC algorithm are used to find a good
threshold index, and an extension of AA (we call this
searching all marked k-indices algorithm) is used to find
all k indices whose values are less than the value of the
threshold index.

In addition, we re-formulate FM algorithm and finding
k-minima algorithm following the manner of AA. There-
fore, all of them can be compared more easily and clearly.
AA is a quantum database search algorithm and is a gen-
eralization of Grover’s algorithm [11]. From N indices,
AA searches one of k indices that satisfy some certain
condition with the query complexity of O(

√
N/k). By

using this AA, FM algorithm finds the minimum data
from N data with the query complexity O(

√
N). This

complexity is smaller than that of the linear search in
the classical computer (O(N)).

2 Preliminaries

2.1 Amplitude Amplification (AA)

As AA treats indices of data instead of data them-
selves, we define the following.

Indices Let D be the set of all indices of data, where
|D| = N .

Oracle Let f(x) be a function that returns 1 or 0.

Marked indices A set of indices that satisfy f(x) = 1
is sometimes called marked indices. That is, {x ∈
D | f(x) = 1}.

Mapping function Since AA treats an index, we need
a mean to access its value. Let g(x) be a function
that maps index x to the corresponding value.

2.2 Finding Minimum Algorithm

FM algorithm is a simple application of AA and
helps understand the succeeding algorithms. This algo-
rithm finds the minimum from D with the complexity
of O(

√
N) by iteratively updating threshold index t by

oracle ft. Oracle ft(x) is a function that marks index x
such that g(x) < g(t). That is,

ft(x) =

{
1, if g(x) < g(t),

0, if g(x) ≥ g(t).
(1)

The oracle marks the indices that have smaller values
than the value of threshold t. Setting a marked index
as the new threshold, the value of threshold decreases.
Eventually, we obtain the index that has the minimum
value.

In summary, FM algorithm is given as follows.

1. Select threshold index t from D uniformly at ran-
dom.

2. Repeat the following process more than

22.5
√
N + 1.4 log2 N

times.

(a) Find index x such that ft(x) = 1.

(b) Set the found index x as threshold index t.

3. Return t as the index that has the minimum value
in D.

2.3 Searching All Marked k-Indices Algorithm

The problem to search all marked k-indices from D and
its query complexity are briefly discussed in [3, 12–15].
Here, we will give the complexity of the problem in an
easy-to-understand way.

AA searches one of the k indices from D in O(
√

N/k)
query complexity [9–11]. By extending this, we can
search all marked k indices by the following algorithm.

1. Initialize the set of search indices M = {x|x ∈
D, f(x) = 1}.

2. Initialize the set of already found indices I = ∅.

3. Repeat the following process until all k marked in-
dices are found (which requires O(k) times).

(a) Search index m ∈ M from D by using AA
with oracle

f ′(x) =

{
1, if f(x) = 1 and x /∈ I,

0, otherwise.
(2)

(b) Add a found index m to I.

(c) Remove m from M .

In the i-th iteration of this algorithm, as |M | =
k − i, the query complexity to search a marked index

is O(
√

N
k−i). Therefore, the total query complexity is

given as

O

(√
N

k
+

√
N

k − 1
+ · · ·+

√
N

)
= O(

√
kN), (3)

because

k∑
t=1

√
1

i
< 1 +

∫ k

1

√
1

i
di = 2

√
k − 1. (4)

3 Conventional Finding k-Minima Algo-
rithm

Dürr and Høyer have proposed an O(
√
kN) algorithm

that finds the k smallest indices of different types from
D [6]. As the algorithm considers types, it is complex.
Hence, we present it in an easier-to-understand way.

As it treats types, we consider the following conditions.

• Each index has a type.

• Let Ci be a set of indices that have type i.

• Let c be the number of types.

Dürr and Høyer’s algorithm finds the indices of the c
smallest values each of which is the minimum in each
type. This means that so as to use the conventional al-
gorithm for the general finding k-minima problem, all
indices must be of different types, which corresponds to
c = N = |D|. Hereafter, we assume all indices are of
different types.

Intuitive explanation of the algorithm is that multi-
ple thresholds are maintained while a single threshold is
maintained in FM algorithm. Let T be a set of k thresh-
olds and let fT (x) be an oracle function such that

fT (x) =

{
1, if g(x) < g(t) for some t ∈ T,

0, if g(x) ≥ g(t) for some t ∈ T.
(5)

Similar to Eq. (1) of FM algorithm, Eq. (5) is regarded as
AA for some threshold t. However, the meaning of some
is not clearly mentioned in [6]. Though the algorithm
does not work well in the worst case, which selects the
threshold index t that minimizes g(t), it works in the
following cases.

1. t is randomly chosen from T .

2. t is selected so as to maximize g(t).

In the case of 2, which is the best case, such t is ob-
tained by finding maximum algorithm [16]. Hence, its
computational burden is O(

√
k). It can be ignored, as it

is small enough compared to the complexity of the whole
algorithm (i.e., O(

√
kN)).

In addition, we have to keep the elements of T without
duplication. So as to do that, the algorithm requires
duplication check or removing T from search indices set

M = {x | fT (x) = 1, x ∈ D}. (6)

We assume that it removes T from M because the pro-
posed method also removes already found indices from
M .

By ignoring types of data, the conventional finding k-
minima algorithm based on Dürr and Høyer’s algorithm
is given as follows.

1. Initialize set T as randomly chosen k indices from
D.

2. Repeat the following forever.

(a) Randomly select a threshold index t from T .

(b) Find index x such that fT (x) = 1 by AA.

(c) Find tmax such that tmax = argmax
t∈T

g(t) by

finding maximum algorithm [16].

(d) Replace threshold index tmax with x.

In this algorithm, T is updated in a step-by-step man-
ner and each updating step replaces the index that has
the maximum value in T with the found index by AA.
This is a kind of a greedy algorithm.

4 Proposed Finding k-Minima Algo-
rithm

We propose a new finding k-minima algorithm with
the complexity of O(

√
kN). Our idea is to search a

good threshold (the first phase) and use it for finding
all marked k-indices algorithm (the second phase). We
begin with presenting the second phase. In the second
phase, all k′ indices, where k′ ≥ k, are found. Suppose
that threshold index tk′ satisfy

M = {x | g(x) < g(tk′), x ∈ D}, (7)

|M | = k′. (8)

In the first phase, in order to find the threshold tk′ ,
we use FM algorithm and QC algorithm. As shown in
Sec. 2.2, in the process of FM algorithm, O(

√
N) thresh-

old indices are found in the descending order of values.
Therefore, it is easy to find tk′ from them by a binary
search with QC algorithm.

We present more detail about this binary search with
QC algorithm. Let us define the following.

• Let tFM
i be the threshold index that is found in the

i-th step of FM algorithm.

• Let TFM be a set of thresholds that are found in
the process of FM algorithm, which is given by

TFM = {tFM
1 , tFM

2 , . . .}

• Let MFM
i be a set of marked indices of the i-th

step in FM algorithm.

• Let h(t) be a function that maps index t to the
number of indices whose values are less than the
value of threshold t in D, which is counted by QC
algorithm. That is,

h(t) = |M(t)|, (9)

where

M(t) = {x | g(x) < g(t), x ∈ D}. (10)

The goal of the binary search is to find i such that
h(tFM

i+1) ≤ k < h(tFM
i). Once such i is found, h(tFM

i) is
used as k′. Fortunately, tk′ exists in the last k indices of
all found thresholds. Hence, we do not have to search all

found O(
√
N) indices but the last k indices. As QC algo-

rithm requiresO(
√
N) query complexity for N indices [8],

a binary search for k indices requires O(log k) compar-
ison. As QC algorithm has to run in each step of the
binary search, threshold tk′ can be found in O(

√
N log k).

In summary, our threshold searching algorithm is
shown below.

1. Apply FM algorithm and save the indices of the
lastly found k thresholds.

2. Apply the binary search on the k indices of thresh-
olds.

Once we find such a threshold, we can find all marked
k′ indices by applying searching all marked k-indices al-
gorithm. This algorithm searches all elements in the set
{x | x ∈ D, f(x) = 1}. For simplicity, we assume that
O(k′) = O(k). Let T be a set of already found indices in
the step of searching all marked k indices algorithm and
let f ′tk(x) be an oracle such that

f ′tk(x) =

{
1, if g(x) < g(tk) and x /∈ T,

0, otherwise.
(11)

Then, searching all marked k-indices in M can be done
in O(

√
kN).

The whole algorithm of the proposed method is below.

1. Apply FM algorithm to D and save the last k in-
dices of FM algorithm step.

2. Search threshold index tk′ by a binary search on
k indices. The comparison key is |MFM | that is
derived by QC algorithm.

3. Apply finding all marked k-indices algorithm with
threshold tk′ .

The total query complexity is given as

O(
√
N log k) +O(

√
kN) = O(

√
kN). (12)

5 Conclusion

In this paper, we proposed a new finding k-minima
algorithm and derived its query complexity. Our algo-
rithm is easier to understand than Dürr’s algorithm and
written in a clear form. Our algorithm consists of two
phases while many of others have one phase. Finding k-
minima algorithm can be applied to many kinds of algo-
rithms or applications. For example, k-nearest neighbor
search, k-nearest neighbor clustering and classification.
If these methods solve problems faster than the classi-
cal computer, the data that can be analyzed is greatly
increased.

References

[1] Nathan Wiebe, Ashish Kapoor, and Krysta Svore.
Quantum algorithms for nearest-neighbor methods
for supervised and unsupervised learning. arXiv
preprint arXiv:1401.2142, 2014.

[2] Esma Aı̈meur, Gilles Brassard, and Sébastien
Gambs. Quantum clustering algorithms. In Proceed-
ings of the 24th international conference on machine
learning, pages 1–8, 2007.

[3] Esma Aı̈meur, Gilles Brassard, and Sébastien
Gambs. Quantum speed-up for unsupervised learn-
ing. Machine Learning, 90(2):261–287, 2013.

[4] Seth Lloyd, Masoud Mohseni, and Patrick Reben-
trost. Quantum algorithms for supervised and
unsupervised machine learning. arXiv preprint
arXiv:1307.0411, 2013.

[5] Maria Schuld, Ilya Sinayskiy, and Francesco Petruc-
cione. An introduction to quantum machine learn-
ing. Contemporary Physics, 56(2):172–185, 2015.

[6] Christoph Dürr, Mark Heiligman, Peter Høyer, and
Mehdi Mhalla. Quantum query complexity of some
graph problems. SIAM Journal on Computing,
35(6):1310–1328, 2006.

[7] Christoph Dürr and Peter Høyer. A quantum al-
gorithm for finding the minimum. arXiv preprint
quant-ph/9607014, 1996.

[8] Gilles Brassard, Peter Høyer, and Alain Tapp.
Quantum counting. In International Colloquium
on Automata, Languages, and Programming, pages
820–831. Springer, 1998.

[9] Gilles Brassard, Peter Hoyer, Michele Mosca, and
Alain Tapp. Quantum amplitude amplification and
estimation. In Jr. Samuel J. Lomonaco, editor,
Quantum Computation and Quantum Information,
volume 305, pages 53–74. American Mathematical
Society, 2002.

[10] Michel Boyer, Gilles Brassard, Peter Høyer, and
Alain Tapp. Tight bounds on quantum searching.
Fortschritte der Physik, 46(4-5):493–505, 1998.

[11] Lov K. Grover. A fast quantum mechanical algo-
rithm for database search. In Proceedings of the
twenty-eighth annual ACM symposium on Theory of
computing, pages 212–219, 1996.

[12] Andris Ambainis. Quantum search algorithms.
ACM SIGACT News, 35(2):22–35, 2004.

[13] Andris Ambainis. A new quantum lower bound
method, with an application to strong direct product
theorem for quantum search. arXiv preprint quant-
ph/0508200, 2005.

[14] Hartmut Klauck, Robert Špalek, and Ronald
De Wolf. Quantum and classical strong direct
product theorems and optimal time-space trade-
offs. SIAM Journal on Computing, 36(5):1472–1493,
2007.

[15] Sebastian Dörn and Thomas Thierauf. A note on the
search for k elements via quantum walk. Information
Processing Letters, 110(22):975–978, 2010.

[16] Ashish Ahuja and Sanjiv Kapoor. A quantum al-
gorithm for finding the maximum. arXiv preprint
quant-ph/9911082, 1999.

	Introduction
	Preliminaries
	Amplitude Amplification (AA)
	Finding Minimum Algorithm
	Searching All Marked k-Indices Algorithm

	Conventional Finding k-Minima Algorithm
	Proposed Finding k-Minima Algorithm
	Conclusion

