
A Quantum Algorithm for Minimum Steiner Tree Problem Masayuki Miyamoto¹, Masakazu Iwamura², and Koichi Kise² ¹Kyoto University, ²Osaka Prefecture University

E-mail:miyamoto.masayuki.46s@st.kyoto-u.ac.jp / masa@cs.osakafu-u.ac.jp / kise@cs.osakafu-u.ac.jp

Introduction			
Minimum Steiner Tree (MST) Problem	TABLE I. Comparison of the algorithms.		
Well-known NP-hard problem	Algorithm Dreyfus and Wagner 4	$\begin{array}{c c} & \text{Complexity} \\ & \mathcal{O}^*(3^k) \end{array}$	classical or quantum classical
✓ Input: An undirected weighted graph $G = (V, E, w: E \to \mathbb{R}^+), V = n,$	Fuchs 5	$\mathcal{O}^*(2.684^k)$	classical
a terminal set $K \subseteq V, K = k$	Mölle 6	$\mathcal{O}((2+\delta)^k n^{f(\delta^{-1})})$) classical
\checkmark Output : A minimum Steiner tree T	Björklund [7] (best known in the restricted		classical
(minimum weighted tree that connects all vertices in the terminal set K)	This paper	$\mathcal{O}^*(1.812^k)$	quantum
•:Terminal nodes Minimum Steiner tree T		<u>O* notation hides a poly</u>	<u>nomial factor in <i>n</i> and <i>k</i>.</u>
Weight: $W(T) = 7$			
	$p^*(1.812^k)$ algorithm gorithm faster than $O^*(2^k)$		Algorithm for an Problem [Amb+19]
\checkmark \land \land \land \land \land \checkmark \land \checkmark The first quality of the first qual	antum algorithm for MST problem	Travelling Sales	sman Problem (TSP)

The Proposed Algorithm

Relation to Prior Work

- Our algorithm has the structure similar to [Amb+19] (one classical part and one quantum part)
- Classical part : [DW71] \succ
- Quantum part : [FKW07] (In quantum setting, two decomposition is better than three decomposition)

Algorithm

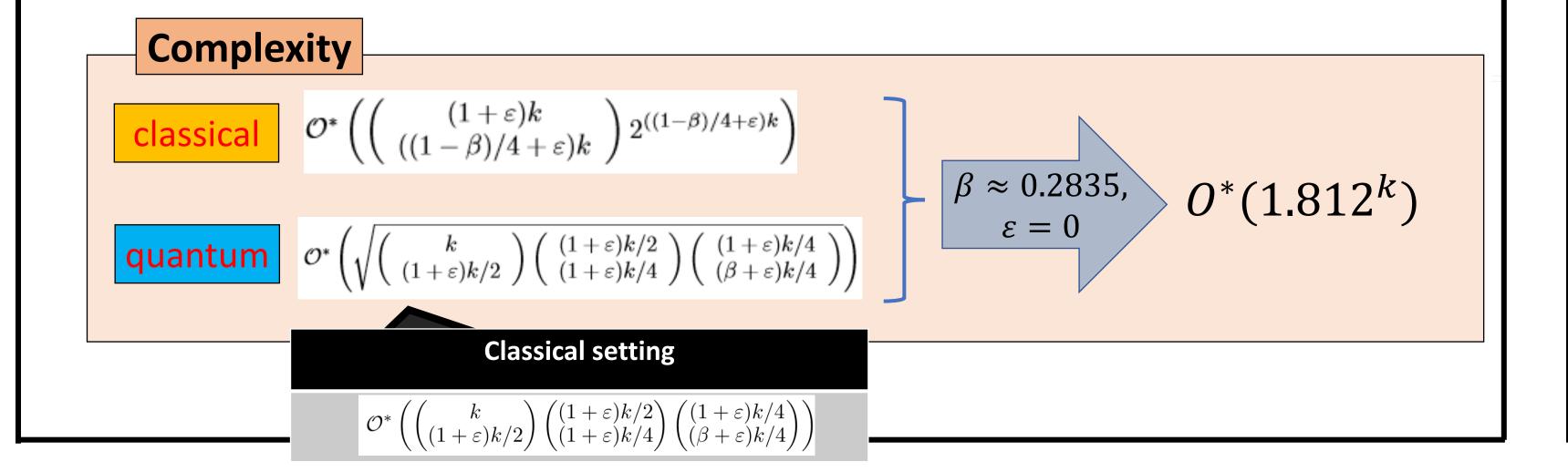
- Classical part : algorithm of [DW71]
- ✓ Quantum part : tree decomposition used in [FKW07]
 - > The size of the set of split nodes $A: |A| = O(\log \frac{1}{s})$
 - > the MST is decomposed into <u>two sub-MSTs</u> whose sizes are $|K_1| = |K_2| = (\frac{1}{2} \pm \varepsilon) k$

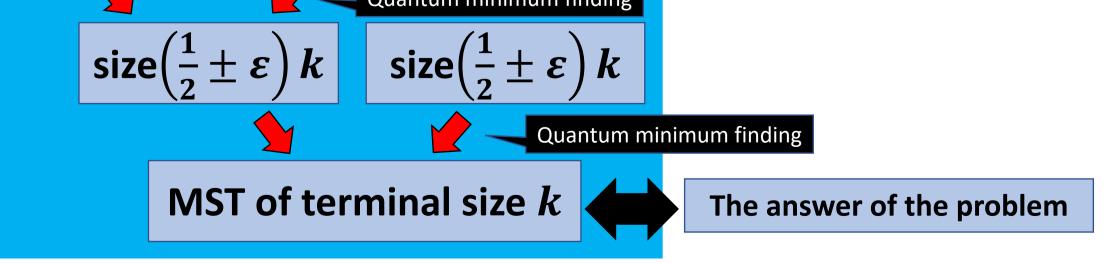
W(K) = $\min_{|K_1|=|V(T_1)\cap K|=\left(\frac{1}{2}\pm\varepsilon\right)k} \min_{A\subseteq V,|A|=\lceil \log_2\frac{1}{\varepsilon}\rceil} \{W(K_1\cup A) + W(K_2\cup v_A)_{G/A}\}\cdots(1)$

Algorithm 2 Quantum algorithm for MINIMUM STEINER TREE

MinimumSteinerTree(graph G = (V, E), edge weights w, a subset of vertices $K \subseteq V$): a minimum Steiner tree for K.

 $W(K_1 \cup A)$ $W(K_2 \cup v_A)_{G/A}$ W(K)size $\left(\frac{\beta}{4} \pm \varepsilon\right) k$ size $\left(\frac{1-\beta}{2}\pm\varepsilon\right)k$ $\boldsymbol{\beta} \in (0, \frac{1}{2}]$ Quantum minimum finding size $\left(\frac{1}{4} \pm \varepsilon\right) k$ size $\left(\frac{1}{4} \pm \varepsilon\right) k$ 📃 Quantum minimum finding


quantum


nrogrammin	α
programmin	<u> </u>

2. (a) To calculate W(K'') for $K'' \subset K$, $|K''| = (\frac{1}{4} \pm \varepsilon)k$, apply D-H algorithm to Eq. (1) with $|K_1| =$ $\left(\frac{\beta}{4} \pm \varepsilon\right)k.$

(b) To calculate W(K') for $K' \subset K, |K'| = (\frac{1}{2} \pm \varepsilon)k$, apply D-H algorithm to Eq. (1) with $|K_1| =$ $(\frac{1}{4} \pm \varepsilon)k.$

(c) Apply D-H algorithm to Eq. (1) with $|K_1| = (\frac{1}{2} \pm \varepsilon)k$ to find the solution.

Some of References

- **[DW71]** : Stuart E Dreyfus and Robert A Wagner. The steiner problem in graphs. Networks, 1(3):195-207, 1971.
- ✓ [FKW07] : Bernhard Fuchs, Walter Kern, and Xinhui Wang. Speeding up the Dreyfus-Wagner algorithm for minimum Steiner trees. Mathematical methods of operations research, 66(1):117-125, 2007.
- ✓ [Amb+19] : Andris Ambainis, Kaspars Balodis, Jānis Iraids, Martins Kokainis, Krišjānis Prūsis, and Jevgenijs Vihrovs. Quantum speedups for exponential-time dynamic programming algorithms. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1783-1793. SIAM, 2019.
- [DH96] : Christoph Durr and Peter Hoyer. A quantum algorithm for finding the minimum. arxiv preprint quant-ph/9607014, 1996.