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What Is the Most Efficient Way to Select Nearest Neighbor Candidates
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Brute-force search

The selected buckets are not necessarily sorted
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Brute-force search (BFS)

[ Fast and accurate

Computation time depends on No. of NNC }

NNC selection

BFS

[ Fast but less accurate ]

i [ Accurate but slow

NNC selection
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' More No. of NNCs is required \
to realize high accuracy
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Standard criterion ]
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Accuracy as a function of No. of NNC
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Accuracy as a function of computation time
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BDH: Bucket distance hashing (Proposed method)
IMI: Inverted multi-index (Babenko, CVPR2012)

IVFADC: Inverted file system with
asymmetric distance computation (Jegou, PAMI2011)

RKD: Randomized kd-tree (Silpa-Anan, CVPR2008)
HKM: Hierarchical k-means (Nister, CVPR2006)
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GIST (384 dimensions)
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( The key to improve ANNS \
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Former state-of-the-art ]

Inverted multi-index (IMI)
[This is called Multi-Sequence Algorithm]
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Feature space is divided into two
subspaces and clustering is applied
to subvectors in each subspace
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® Proposed the most scalable ANNS method

® Pointed out shortage of the standard criterion of
approximate nearest neighbor search (ANNS)

® Compared representative ANNS methods in the
criterion, recall as a function of computation time

New state-of-the-art ]

Bucket distance hashing (BDH) — The proposed method
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( Squared distances between \

the query and centroids
In the original subspace

When the upper bound of
the squared distance is 8
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Centroids in subspace 1
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Branch and bound representation

Centroids in
the original space

Squared distances Squared distances

Squared distances between \

the query and centroids
INn each subspace
(not sorted)

between the query between the query
and centroids and centroids
in subspace 1 iIn subspace 2

Branch and bound representation

" No Comparative\
sort and heap! )
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No. of NNCs increases as the upper bound increases
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