THE INSTITUTE OF ELECTRONICS, TECHNICAL REPORT OF IEICE.

INFORMATION AND COMMUNICATION ENGINEERS

An Attempt of CUDA Implementation of PCA-SIF'T

Masakazu IWAMURAT, Takayuki HONDO', Kazuto NOGUCHI', and Koichi KISET

1 Graduate School of Engineering, Osaka Prefecture University
1-1 Gakuencho, Naka, Sakai, 599-8531 Japan
E-mail: {{masa,kise}Qcs.osakafu-u.ac.jp, {hondo,noguchi}@m.cs.osakafu-u.ac.jp

Abstract GPGPU (General-Purpose computation on GPUs) is a paradigm to use GPUs (graphics processing
units) for general computation. Due to recent remarkable improvement of GPU, GPU outperforms CPU in compu-
tation ability. However, most people could not use the ability for general computation because existing programming
languages require knowledge about GPU hardware architectures and computer graphics for GPGPU computing.
Recently, a new GPU language CUDA (Compute Unified Device Architecture) has been released from NVIDIA. The
CUDA code is C language style and has less computational restriction. Thus, usual operations of C language can
run on GPU without much special knowledge. In this report, we briefly introduce CUDA language programming
and report a CUDA implemented of PCA-SIFT. Compared to a CPU implementation, our CUDA implementation

reduced the processing time to around 1/4. In addition, we also report an interesting phenomenon results useful for

practical use of CUDA.

Key words PCA-SIFT, CUDA, GPU, GPGPU

1. Introduction

GPGPU (General-Purpose computation on GPUs) is a
paradigm to use GPUs (graphics processing units) for gen-
eral computation. Due to recent remarkable improvement of
GPU, GPU outperforms CPU in computation ability, and has
been evolving faster than CPUs (i.e., Moore’s Law). How-
ever, most people could not use the ability for general compu-
tation because existing shading language such as Cg, HLSL
and GLSL require knowledge about GPU hardware archi-
There are some GPGPU-

oriented programming languages such as Brook [4], however,

tecture and computer graphics.

it is known to be very slow.

Recently, a new GPU language CUDA (Compute Uni-
fied Device Architecture) has been released from NVIDIA.
Though CUDA runs only on some restricted GPUs, the
CUDA code is C language style and has less computational
restriction. Thus, usual operations of C language can run on
GPU without much special knowledge.

In this report, we briefly introduce CUDA language pro-
gramming and report a CUDA implementation of PCA-SIFT
algorithm. The implemented PCA-SIFT was used for a
demonstration on MIRU2007 [7]. In experiments, our CUDA
implementation is compared to a CPU implementation. In
addition, we report an interesting phenomenon useful for
practical use of CUDA.

2. CUDA

2.1 Overview

CUDA (Compute Unified Device Architecture) is a new '
GPU programming language which allow us to program an
algorithms executed on GPU in the C programming lan-
guage. CUDA works only on relatively new NVIDIA graph-
ics cards including GeForce 8000 series, a part of Quadro FX
series and Tesla series.

A CUDA code is written in the standard C language®with
some extensions related to GPU computation. It is compiled
with the CUDA compiler nvce, and can be linked with C++
code also. Algorithms executed on GPU have some limita-
tions which include

® functions executed on GPU cannot call functions exe-
cuted on CPU;

® recursive functions are not supported;

® static variables are not supported;

® double-precision floating-point numbers are not sup-

L The initial CUDA SDK was made public in February 2007 and the
version 1.0 was released in June 2007.

2To be exact, it is noted in Sec. 4.2.5 of [2]: “The front end of the
compiler processes CUDA source files according to C++ syntax rules.
However, only the C subset of C++ is supported. This means that
C++ specific features such as classes, inheritance, or declaration of

variables within basic blocks are not supported.”

x-axis size

y A/ S S S S,
y-axissize/_fJ J J J J N
/A A/ S A 4

x-axis size

y-axis size

Thread block

(a) A thread block. (b) A grid of thread blocks.

Figure 1 (a) Threads form a thread block. The maximum sizes of
the x-, y-, and z-dimension of a thread block are 512, 512
and 64, respectively. The maximum number of threads
per thread block is 512. Each thread in a thread block is
identified by thread ID which represents the 3D coordi-
nate in the block. The threads in a thread block shares
fast shared memory mentioned in Sec. 2.3. (b) Thread
blocks form a grid. The maximum size of each dimen-
sion of a grid of thread blocks is 65535. Each block is
identified by block ID which represents the 2D coordi-
nate of the block in the grid. All the threads in a grid
execute a common function. In the current implemen-
tation, CUDA execute thread of one grid at the same

time.

ported in the current devices (supported in future devices);

® single-precision floating-point arithmetic are deviated
from the IEEE 754 standard.

2.2 Basic things

We explain some basic things required to read this report.
For the sake of efficient calculation on GPU, many threads
execute a function with different data in parallel. Thus each
thread has IDs to identify data.
threads form a thread block. Each thread in a thread block
is identified by thread ID which represents the 3D coordinate
in the block. The threads in a thread block shares fast shared

As shown in Fig. 1(a),

memory mentioned in Sec. 2. 3. As shown in Fig. 1(b), thread
blocks form a grid. Each block is identified by block ID which
represents the 2D coordinate of the block in the grid. A grid
is a unit to execute a function.

Then, we explain how to execute an algorithm on GPU
with a simple CUDA code and the corresponding C code
shown in Listing 1 and Listing 2. The program subtract a
widthx height gray-scale image img?2 from another gray-scale
image tmgl of the same size for each pixel. For both codes,
each gray-scale image is represented by a one-dimensional
float array in the range of [0, 1]. In the C code, a double-for-
loop executes the calculation for each pixel. To the contrary,
the CUDA code has no “for loop”. This is because “for loops”
are expanded for parallelism.

Before describing the for-loop expansion, we first explain
the structure of the CUDA code. In the CUDA code, there
are two functions: sub_kernel beginning at a line 6 is executed

on GPU and CUDA_sub beginning at a line 26 is executed

Listing 1 CUDA program to subtract two images.
g

1 #include <math.h>
2 || #£define BS_X 16 // x—axis thread block size
3 || #£define BS_Y 16 // y—axis thread block size
4
5 || // function on GPU; executed by each thread
6 || -_global__ void
7 || sub_kernel(float *imgl, const float *img2,
8 const int width, const int height)
9 £
10 int bx = blockldx.x; // Block index
11 int by = blockldx.y;
12
13 int tx = threadldx.x; // Thread index
14 int ty = threadldx.y;
15
16 int x = tx + BS_X * bx; // The coordinate of the thread
17 int y =ty + BS_Y * by;
18
19 // Execute only inside the image
20 if (y<height && x<width) {
21 imgl[y*width + x] —= img2[y*width + x];
22| 3}
23 || }
24
25 || // function processed on CPU
26 || extern "C”
27 || void CUDA_sub(float *imgl, const float *img2,
28 const int width, const int height)
29 {
30 // x— and y—axis grid sizes
31 int blk_x = (int) ceil ((float)width/BS_X);
32 int blk_y = (int) ceil ((float)height/BS_Y);
33
34 // Execution configuration
35 dim3 threads(BS_X, BS_Y); // the size of a block
36 dim3 grid(blkx, blk_y); // the size of the grid
37
38 // call the kernel
39 sub_kernel< << grid, threads >>>(imgl, img2 width, height);
40 || }
s
Listing 2 C program to subtract two images.
1 || void sub(float *imgl, const float *img2,
2 const int width, const int height)
34
4 int x, y;
5 for (y=0; y<height; y++) {
6 for (x=0; x<width; x++) {
7 imgl[y*width + x] —= img2[y*width + x];
8 }
o 3
10 || }
s

on CPU. The former executes the subtraction in actual, and
the latter configures and calls the former. The configuration

may contain GPU memory allocation because it cannot be

width width
f _
5 5
2 2
o o
o \ o
>~< <
bs_x bs_x
(a) Non-overlapping as- (b) Overlapping assign-
signment. ment.

Figure 2 Assignment example of threads to a widthXx height im-
age. The image is covered by a grid containing 3 X 3
thread blocks without or with overlapping. Each thread

block contains bs_zXx bs_y threads. As the result, each

thread is assigned to each pixel. Note that we ignore

z-axis here. Thus, to be exact, bs_zx bs_yx 1 threads per

each block are used in both cases.

done in a GPU function. Thus the most important thing of
the configuration is determination of sizes of a thread block
and a grid. For example, in this case, an image is covered
by thread blocks without overlapping as shown in Fig. 2(a).
Thus, each thread is assigned to each pixel. Let us back to
the for-loop expansion. Since each thread is assigned to each
pixel, “for loop” is not needed any more.

Let us follow the function sub_kernel beginning at a line
6 in the CUDA code. At lines 10-14 of the CUDA code,
each thread knows the coordinate as thread ID and block
ID. Then, at lines 16-17, the position of the pixel where the
thread is assigned is calculated. Namely, the coordinates in
a thread block and in a grid are tied with the coordinate
in an image. Finally, at lines 20-22, the subtraction is car-
ried out. Note that as shown in Fig. 2(a), there exists some
threads which are not assigned to any pixels. They should not
be executed to avoid memory access violation unless enough
memory is allocated for the images.

Finally, we explain briefly on the function CUDA_sub beg-
ging at a line 26. At lines 35-36, thread block and grid sizes
are set. The calculation at lines 31-32 determine the sizes.
BS_X and BS.Y are predefined thread block sizes in x- and
y-axes, which correspond to bs_z and bs_y in Fig. 2(a). Fi-
nally, at a line 39, the GPU function sub_kernel is called.
Two variables after <<< are the thread block and grid sizes,
and variables in the parentheses after >>> are arguments of
the GPU function.

2.3 Example with shared memory

As mentioned in Sec. 2.2, the threads in a thread block
shares faster shared memory than global memory or texture

memory [2]. Using shared memory is very important to re-

duce processing time. Thus, we show a simple example of
CUDA code and the corresponding C code in Listing 3 and
Listing 4® The program differentiates an image along x- and
y-axes. The big difference in the configuration precess in
Listing 3 from Listing 1 is that BS_X and BS_Y are replaced
by (BS-X — 2) and (BS_Y — 2) as shown in Fig. 2(b). This
overlapping enables us to differentiate an image efficiently.

We omit the detail.
3. Implementation

3.1 PCA-SIFT

PCA-SIFT [5] is an improvement of SIFT [6]. SIFT (Scale-
invariant feature transform) is one of the most popular fea-
ture extraction algorithms in computer vision. SIFT descrip-
tors have some good properties including scale and rotation
invariance, robustness against change of viewpoints and that
in illumination. The SIFT algorithm can be separated into
two stages: (a) calculation of keypoints, and (b) calculation
of SIFT descriptors. At the stage (a), feature points (key-
points) stable and robust to change of view angles and noises.
At the stage (b), 128-dimensional SIFT descriptors are cal-
culated for the keypoints. PCA-SIFT replaces the stage (b).
Instead of 128-dimensional SIFT descriptors, PCA-SIFT cal-
culates 36-dimensional PCA-SIFT descriptors.

Extracting SIFT and PCA-SIFT descriptors are very time
consuming. It takes a few seconds for a VGA size image.
Thus GPU implementation of SIFT exists [3],[8]. However,
that of PCA-SIFT does not exist. Therefore, we implemented
PCA-SIFT on CUDA.

3.2 Details

Since translating into a CUDA code from a C code is
relatively easier than other languages, we prepare an orig-
inal code of PCA-SIFT written on C and C++ languages.
The original source code of PCA-SIFT was downloaded from
http://www.cs.cmu.edu/~yke/pcasift/. Since the source
code required SIFT descriptors, we downloaded a SIFT
implementation from http://web.engr.oregonstate.edu/
~hess/ and merged them.

The overview of our implementation is shown in Fig. 3. The
overall process is as follows.

(1) An image to be processed is loaded and transferred
from the host to the GPU. We did not use texture memory
but global memory.

(2) A Gaussian scale-space pyramid is created on the
GPU. As the Gaussian convolution, we used a CUDA

code sample “convolution.” * Using the Gaussian pyramid,

3Note that this example is too simple to reduce processing time because
the number of memory access is small.
*The code sample was downloaded from http://developer.download.

nvidia.com/compute/cuda/sdk/website/samples.html. Now, “convolu-

— 3 —

© 0 N O U R W N

Ut Ot Ot Ot Ot Ot Ut Ot U R B R B R B R R B B W W W W W W W W W WY NN NN NN NN N R R R R
© 0 N DU R WN O © N DU R WN QO © 0N U R WN QO © XN O U R WN RO © NSO R W N = O

Listing 3 CUDA program to differentiate an image
p

#include <math.h>
#define BS_X 16 // x—axis thread block size
#define BS_Y 16 // y—axis thread block size

// function on GPUj; executed by each thread

__global__ void

DXDY _kernel(float *dx, float *dy, const float ximg,
const int width, const int height)

// Block index
int bx = blockldx.x;
int by = blockldx.y;

// Thread index
int tx = threadldx.x;
int ty = threadldx.y;

// The coordinate of the thread
int x = tx + (BLOCK_SIZE_X—2) * bx;
int y = ty + (BLOCK_SIZE_Y —2) * by;

// Declare a variable on shared memory
_shared__ float img_sh[BS_X][BS_YT;

// copy to shared memory
if (y<height && x<width) {
img_sh[tx][ty] = img-in[y*width + x];

// Synchronize to make sure the image is copied

_syncthreads ();

// Execute only inside the image
// if it’s not overlapped position of the thread block
if (y>=1 && y<height—1 && x>=1 && x<width—1 &&
tx!=0 && ty!=0 && tx!=BS_X—1 && ty!=BS_.Y—-1) {
dx[y*width 4+ x] = img_sh[tx+1]{ty] — img_sh[tx—1][ty];
dy[y*width 4+ x] = img_sh[tx][ty+1] — img_sh[tx][ty—1];

// function processed on CPU

extern "C”

void CUDA_DXDY (float *dx, float xdy, const float *img,
const int width, const int height)

// x— and y—axis grid sizes
int blkx = (int) ceil ((float)width/(BS_-X—2));
int blk_y = (int) ceil ((float)height/(BS_Y—2));

// Execution configuration
dim3 threads(BS_X, BS.Y); // the size of a block
dim3 grid(blk_x, blk_y); // the size of the grid

// call the kernel
DXDY _kernel< << grid, threads >>>
(dx, dy, img, width, height);

Listing 4 C program to differentiate an image

1 || void DXDY (float xdx, float *dy, const float ximg,

2 const int width, const int height)

s || 1

4 int x, y;

5 for (y=1; y<height—1; y++) {

6 for (x=1; x<width—1; x++) {

7 dx[y*width + x] =

8 img[y*width + x+1] — img[y*width + x—1];

9 dy[y*width + x] =
10 img[(y+1)*width 4+ x] — img[(y—1)*width + x];
11 }
12 1
13 || }

K J

[enusseyia

Gaussian scale-space DoG

dx dy
(2) Build pyramids

(4a) Find Keypoints
(4b) GPU memory allocation

L

(3) Detect local extrema

Eigenvectors
matrix

(7) Apply PCA

Figure 3 Overview of our CUDA implementation of PCA-SIFT.

‘wip zvoe N

5) Create a patch window
(6) Calculate 3042-dim. features

8) Save descriptors

Difference-of-Gaussian (DoG) images, the image gradients
along x- and y-axes for each pixels are calculated.

(3) Local extrema are detected in parallel on GPU. Def-
inition of the local extremum is that the pixel value of a
sample point of DoG pyramid is larger or smaller than those
of 26 neighbors. 26 neighbors include eight neighbors in the
same scale and nine neighbors in both adjacent scales. Lo-
cal extrema are candidates of keypoints. After the detection,
candidate locations and scales are recalculated at the sub-
pixel level, and inaccurate candidates are removed.

(4) Keypoints are found on CPU? According to the num-
ber of keypoints, GPU memory is allocated.

(5) For each keypoint, a patch window in a Gaussian
scale-space is created according to the position, scale and
orientation of the keypoint.

(6) For each keypoint, a 3042-dimensional feature vector

tion” is not available because it was replaced by “convolutionSepa-
rable” when CUDA SDK version 0.9 was released.
5In the current implementation, keypoints are found on CPU. However,

it can be on GPU in future.

is calculated by differentiating the window patch.

(7) For each keypoint, a 36-dimensional PCA-SIFT de-
scriptor is acquired by applying PCA. For the multiplication
of a matrix and a vector, CUDA BLAS (CUBLAS) [1], where
is an implementation of BLAS (Basic Linear Algebra Subpro-
grams) on CUDA is used. The eigenvectors matrix included
in the source package of PCA-SIFT was used.

(8) PCA-SIFT descriptors are transferred from the GPU
to the host, and saved.

4. Experiments

We performed two experiments: (1) comparison of process-
ing time of PCA-SIFT on CPU and GPUs, (2) the overhead
of calling a GPU function.

All the experiments were carried out on an Athlon 64 X2
6000+ machine with 4GB memory. For GPU, three GPUs
were examined: GeForce 8800GTX, 8800GTS and 8600GTS.
Each of them has 16, 12 and 4 multiprocessors, respectively.
A multiprocessor contains eight processors. The processors
of a multiprocessor execute an instruction simultaneously.

4.1 Processing time of PCA-SIFT on CPU and

GPUs

In the first experiment, we compared processing times of
CPU and GPU implementations of PCA-SIFT for evaluating
the effect of parallel processing. For the evaluation, we di-
vide the processes described in Sec. 3.2 and Fig. 3 into three
parts: (2), (3)-(4) and (5)—(7).

to building pyramids, calculation of keypoints, and calcula-

Each of them corresponds

tion of PCA-SIFT descriptors, respectively. The processing
times of the whole process and the three partial processes
are shown in Table 1. In the experiments, 64 images were
used. Average image size was 514.9 x 438.8 pixels. 1411.1
keypoints were found on GPU and 1398.8 on CPU in average.
Although processing time highly depends on the number of
detected keypoints, the numbers are almost same. The rea-
son that they were not exactly same was not investigated.
The data transfer rate between the host and the GPU was
around 2MB per millisecond for both directions. The exper-
imental result shows that our GPU implementation achieved
around 2/5, 8/7 and 1/10 of CPU processing time for each
partial process in the case of GeForce 8800GTX. In total, it
reduced the processing time to around 1/4.

We consider the reasons of the bad performance. Firstly,
the reason of little reduction in processing time for (2) seems
that the degree of parallelism is low. In order to obtain better
performance on CUDA, executing as many threads as possi-
ble simultaneously is better. This means that creating images
of the Gaussian pyramid simultaneously as many as possible
achieves better performance. However, in the current imple-

mentation, only one image is processed simultaneously. This

Table 1 Average processing times of PCA-SIFT executed on dif-

ferent devices are shown. The top row represents the
name of device, and the number in the parentheses rep-
resents the number of multiprocessors of the GPU. The
numbers in the rightmost column correspond to the pro-
cess numbers described in Sec. 3.2 and Fig. 3. Note that
calculation of the image gradients (dx and dy) was con-

tained in the process (2) on GPU and the processes (3)—

(4) on GPU.
GeForce GeForce GeForce
8800GTX (16) | 8800GTS (12) | 8600GTS (4) | PV
(2) 90.27 107.7 169.4 224.0
(3)—(4) 252.7 283.7 414.1 222.1
(5)~(7) 209.3 218.4 299.7 1932
Total 572.2 628.7 899.0 2383

can be improved relatively easier. Secondly, the reason of
increase in processing time for (3)—(4) seems that (i) sparsity
of local extrema and (ii) calling a GPU function many times.
For (i), the number of local extrema is essentially very few
for the number of pixels. Since threads execute a function,
one-on-one assignment between a pixel and a thread can in-
crease waiting threads and reduce efficiency. Thus, finding a
balanced point of the assignment, e.g., four pixels per thread,
seems to be required. For (ii), this is the same problem to
the low degree of parallelism discussed above. The problem
is also related the overhead problem discussed in Sec. 4. 2.

Note that the total time does not match the sum of process-
ing time of the three partial processes because only the total
time contains the processing time of some processes such as
releasing memory.

4.2 Overhead of calling a GPU function

As mentioned above, there exists the overhead of calling
a GPU function. We found an interesting phenomenon on
the overhead. It was found when we examined the computa-
tional ability of a processor on GPU because if the ability of a
processor is high, almost all computation can be executed on
GPU without switching to CPU. However, the calculation on
GPU was unreasonably low regardless to the computational
task. The reason was the overhead of calling a GPU function.

Thus, we investigated the overhead. The result is shown
in Fig. 4. In the figure, we can confirm that there exists
relatively small overheads and large overheads for the num-
ber of threads in a thread block in GeForce 8800GTX and
GeForce 8800GTS. However, it did not appear in GeForce
8600GTS. This seems to be caused by the number of multi-
processors. Though Fig. 4 shows only when the thread block
size was « X 1, we confirmed that the result did not change
when the thread block size was z/2 x 2. Similarly, we con-
firmed the phenomenon appeared the grid size was 128 x 128.

However, the phenomenon disappeared when the number of

thread block in the grid was less than about 100.

Though we do not know the reason, we think this informa-
tion is useful to execute a relatively large grid. For example,
we obtained 10 milliseconds gain by just changing a thread
block size from 16 x 16 to 16 x 12 with GeForce 8800GTX.

5. Conclusions

In this report, we introduced CUDA, a newer GPU pro-
gramming language, and an implementation of PCA-SIFT
on CUDA. The CUDA code is C language style and has less
computational restriction. Thus, usual operations of C lan-
guage can run on GPU without much special knowledge.

In the experiments, our CUDA implementation reduced the
processing time to around 1/4 compared to a CPU implemen-
tation. In addition, we experimentally examined an interest-
ing phenomenon useful for practical use of CUDA.

Future work includes performance improvement of the im-
plementation in two points: (1) creating images of the
Gaussian pyramid simultaneously as many as possible, and
(2) finding keypoints, numbered (4a) in Fig. 3, on GPU.

A cknowledgment

This research was supported in part by the Grant-in-Aid
for Scientific Research (B) (19300062) from Japan Society for
Promotion of Science.

References

[1] CUDA CUBLAS Library Version 1.0, June 2007. Download-
able at http://developer.nvidia.com/object/cuda.html.

[2] CUDA Programming Guide Version 1.0, June 2007. Down-
loadable at http://developer.nvidia.com/object/cuda.
html.

[3] http://cs.unc.edu/~ccwu/siftgpu/.

[4] http://graphics.stanford.edu/projects/brookgpu/.

[5] Yan Ke and Rahul Sukthankar. PCA-SIFT: A more dis-
tinctive representation for local image descriptors. In Proc.
CVPR’04, volume 2, pages 506-513, 2004.

[6] David G. Lowe. Distinctive image features from scale-
invariant keypoints. Proc. ICCV’04, 60(2):91-110, 2004.

[7] Kazuto Noguchi, Takayuki Hondo, Masakazu Iwamura, and
Koichi Kise. Real-time recognition of objectsby cascading ap-
proximate nearest neighbor searchers. Proceedings of MIRU
2007, pages 467-468, July 2007.

[8] Sudipta N Sinha, Jan-Michael Frahm, Marc Pollefeys, and
Yakup Genc. Gpu-based video feature tracking and match-
ing. Technical Report TR 06-012, Department of Computer
Science, UNC Chapel Hill, May 2006.

Processing time [ms]

Processing time [ms]

Figure 4

Processing time [ms]

0 100 200 300 400 500

Number of threads (x)
(a) GeForce 8800GTX.
20 T T T T T
187
16
14
12r
10F
96
8f 192 (x16)
(x12)
60 100 200 300 400 500

Number of threads (x)

(b) GeForce 8800GTS.

0 100 200 300 400 500

Number of threads (x)

(c) GeForce 8600GTS.

The overhead of calling an empty GPU function. The
thread block size was =z x 1 and the grid size was
1024 x 1024. The results show that the overhead was
changed in every 16 increase of . In the parentheses,
x/16 is shown as, e.g., X8 and x10. There exists rela-
tively small overheads and large overheads for the num-
ber of threads in a thread block in GeForce 8800GTX
and 8800GTS. x10, x12 and %24 had relatively small
overhead. However, it did not appear in 8600GTS. This

seems to be caused by the number of multiprocessors.

