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Abstract

In this paper, design and recognition of human-readable
and machine-readable patterns are investigated. Specifi-
cally speaking, we design character images printed with a
horizontal stripe pattern, called a cross ratio pattern. The
cross ratio derived from the cross ratio pattern represents
the class information of the character. Since the cross ratio
is invariant to projective distortion, the class information is
extracted correctly regardless of camera angle. The charac-
ter image itself is human-readable and therefore the char-
acter image with the cross ratio pattern is not only human-
readable and but also machine-readable and can be used as
a medium for human-machine communication.

1. Introduction

Camera-based character recognition [1] is a promising way
for acquiring various textual information from real scenes.
Several hurdles, however, should be cleared for practical
and accurate camera-based character recognition. For ex-
ample, the character images often undergo geometric dis-
tortions, such as projective distortion.

The aim of this paper is to realize accurate camera-based
character recognition by embedding class information into
each character image. Specifically, each character image is
printed with a horizontal stripe pattern, called a cross ratio
pattern. The cross ratio derived from the cross ratio pat-
tern represents the class information of the character. Since
the cross ratio is invariant to the projective distortion [2],
the class information will be correctly extracted even from
character images captured from an arbitrary camera angle.

In Section 2, we describe how a cross ratio is embedded
into a character image for providing the class information
of the character. The extraction of the embedded cross ratio
from the character image is also discussed in this section.

When the variations of the cross ratios are fewer than
character classes, the same cross ratio is assigned to several

different character classes. In this case, we cannot deter-
mine the character class uniquely from the extracted cross
ratio. Thus, in Section 3, we use a shape similarity between
reference and input character images as well as the cross
ratio for the unique determination. In Section 4, we point
out that the assignment of the cross ratios to the character
classes affects the recognition performance attained by the
combination of the cross ratio.

In Section 5, we evaluate the proposed technique quanti-
tatively through recognition experiments. In Section 6, the
proposed technique is compared to other strategies where
class information is provided in different manners. Finally,
we present our conclusions and future works in Section 7.

2. Embedment of cross ratio pattern to
character image

2.1. Cross ratio pattern
In the proposed technique, a horizontal stripe pattern, called
a cross ratio pattern, is embedded to each character im-
age. Figure 1(a) shows a character image “K” printed with
a cross ratio pattern. Characters of a certain class is printed
with the same cross ratio pattern. The cross ratio pattern
is comprised of five horizontal stripes. The first and the
last stripes are guides which have a fixed width and define
the beginning and the end of the cross ratio pattern, respec-
tively. The remaining three stripes have variable widths, l1,
l2, and l3.

Instead of using l1, l2, or l3 directly, we use the following
numerical value r, called the cross ratio, for representing
class information:

r =
(l1 + l2)(l2 + l3)
l2(l1 + l2 + l3)

. (1)

It is well-known that the cross ratio is invariant to projective
distortions. Thus, by using the cross ratio, we can extract
the class information correctly regardless of camera angle.
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Figure 1: (a) A character image “K” where a cross ratio
pattern is embedded. (b) Projective distortion. Note that a
high-contrast cross ratio pattern is intentionally used here
for visual emphasis.

Since character classes are discrete, the cross ratio r
is discretized into K levels, rk (k = 1, 2, . . . , K), and
assigned to |C| classes, where C is the set of character
classes. The detail of the assignment will be discussed in
Section 4.

2.2. Extraction of cross ratio
The cross ratio rk can be extracted from a character image
printed with a cross ratio pattern by the following proce-
dure:

Step 1: Draw a line p which crosses two guides (Fig. 1(b)).

Step 2: Measure the widths of the three stripes on p (l ′1, l
′
2,

and l′3 of Fig. 1(b)).

Step 3: Using l′1, l
′
2, and l′3 instead of l1, l2, and l3, obtain

rk according to (1).

The value rk obtained by this procedure is theoretically in-
variant to projective distortions. This means that we can
extract the same cross ratio rk regardless of camera angle.
In addition, the value rk is also invariant to the position and
the slope of the line p.

The accuracy of the extracted cross ratio may be de-
graded due to insufficient camera resolution. In order to
avoid this degradation, we use the following robust estima-
tion strategy: (i) we draw the line p on the character image
P times changing its position and slope randomly, (ii) ob-
tain P cross ratio values, (iii) quantize each of those values
into one of rk, and (iv) choose the most frequent rk as the
cross ratio embedded.

2.3. Design of cross ratio patterns
The K cross ratios, r1, . . . , rk, . . . , rK , are prepared by
changing the proportion of l2 and l3. Specifically, assum-
ing L = l1 + l2 + l3 and l1 are constant, rk is determined

by (1) with the following l2 and l3:{
l2 = (L − l1 − 2ε)(k − 1)

K − 1 + ε,

l3 = L − l1 − l2,
(2)

where ε is a positive constant specifying the minimum of l2
and l3.

The above strategy is based on a simple linear quanti-
zation and may be weak against errors on the stripe widths
l1, l2, and l3 due to the insufficient camera resolution. In
fact, larger k becomes, closer rk and rk+1 become. Thus,
a small error on the stripe widths may confuse those close
cross ratios. Future work should focus on a more sophisti-
cated strategy to avoid the confusion as possible.

3. Recognition by cross ratio and
shape similarity

In most cases, we cannot expect one-to-one assignment of
K cross ratios to |C| classes. Specifically, |C| is often large
(e.g., |C| > 1000 for Chinese characters) whereas K is
bounded by L−l1−2ε (∼ character height in pixel) accord-
ing to (2). Thus, the same cross ratio rk will be assigned to
several classes Ck ⊂ C, where C1, . . . ,Ck, . . . ,CK are
disjoint subsets of C, and therefore the class c of an in-
put character image cannot be determined by the extracted
cross ratio rk. In other words, there are |C k| candidates of
the correct class when rk is extracted.

For choosing the most reliable class from the |C k| candi-
dates, we employ some shape similarity between two char-
acter images. Assuming that a reference character pattern
(i.e., a template) is prepared for each class, the complete
recognition procedure based on a combination of the cross
ratio and the shape similarity is as follows:

Step 1: Extract the embedded cross ratio rk from an input
character image by the procedure of Section 2.2.

Step 2: For each class in Ck, calculate the shape similarity
between the reference character image of the class and
the input character image.

Step 3: Choose the class with the highest shape similarity.

Note that this procedure totally relies on the extracted
cross ratio rk. If a wrong rk is extracted, the correct class
is never chosen by the procedure. Fortunately, the cross ra-
tio rk can be extracted with high accuracy (around 99%, as
shown in Section 5.2), thus good performance is expected.

4. Assignment of cross ratios to classes

The assignment of K cross ratios to |C| classes, that is,
the partition of C into the disjoint subsets {Ck}, is cru-
cial for better performance of the proposed technique. The
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Figure 2: Character images printed with different cross ratio patterns (i.e., K = 26).
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Figure 3: Test patterns.

recognition procedure of Section 3 provides correct recog-
nition result if (i) the cross ratio rk is correctly extracted
and (ii) the correct class has the highest shape similarity in
Ck. Thus, for better recognition performance by satisfying
the latter condition (ii), the subset C k should be comprised
of classes which are “less easy to confuse” for the shape
similarity, as shown in the following example.

Assume that “H” and “N” are confusing classes (that is,
“H” is often misrecognized as “N” by the shape similarity)
and “H” and “N” are assigned to the same subset C k. In
this case, we will suffer from the misrecognition between
“H” and “N”, even though their cross ratios are correctly
extracted. Clearly, this is because they cannot be distin-
guished by their cross ratios. In contrast, if these two classes
are assigned to different subsets, they can be distinguished
by their cross ratios and therefore correct recognition results
will be provided. As shown by this example, the assignment
{Ck} should be optimized with a criterion that confusing
classes are assigned to different subsets. In the experiment
of Section 5, the assignment was optimized by the strategy
of [6], where the so-called confusion matrix of the shape
similarity is used to identify its confusing classes.
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Figure 4: Recognition rates attained by using shape similar-
ity alone.

5. Simulation experiment
5.1. Experimental setup
5.1.1 Original character images

The 26 capital English letter images from the font-set called
“Arial” were used as original character images. After em-
bedding cross ratio patterns into them (according to the
scheme of the following sections), those images are used as
not only reference patterns but also the source patterns for
synthesizing test patterns. Their heights were around 200
pixels. On the other hand, their widths were not the same;
the maximum, the minimum, and the mean of widths were
251 (of “W”), 52 (of “I”), and 170, respectively.

5.1.2 Design of cross ratio patterns

According to the procedure of Section 2.3, K(≤ 26 = |C|)
cross ratio patterns, r1, . . . , rk, . . . , rK , were designed.
Figure 2 shows the original character images printed with
K = 26 different cross ratio patterns. The width of the
guide was 5 pixels. The widths L, l1, and ε, were fixed at
150, 15, and 15 pixels, respectively. The assignment of K
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Table 1: Confusion matrix by using the shape similarity by elastic matching.
recognition result

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A 256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B 0 256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C 0 0 256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D 14 0 0 241 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
E 0 26 0 0 230 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F 0 0 0 0 0 256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 250 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0 256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
J 0 0 0 0 0 0 0 0 0 256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

K 0 0 0 0 0 0 0 0 0 0 256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t L 0 0 0 0 0 0 0 0 0 0 0 256 0 0 0 0 0 0 0 0 0 0 0 0 0 0

u M 0 0 0 0 0 0 0 0 0 0 0 0 256 0 0 0 0 0 0 0 0 0 0 0 0 0

p N 0 0 0 0 0 0 0 182 0 0 0 0 64 10 0 0 0 0 0 0 0 0 0 0 0 0

n O 0 0 0 42 0 0 0 0 0 0 0 0 0 0 214 0 0 0 0 0 0 0 0 0 0 0

i P 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 252 0 0 0 0 0 0 0 0 0 0
Q 0 0 0 6 0 0 0 0 0 0 0 0 0 0 24 0 226 0 0 0 0 0 0 0 0 0
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 256 0 0 0 0 0 0 0 0
S 0 4 0 0 0 0 58 0 0 0 0 0 0 0 0 0 0 0 194 0 0 0 0 0 0 0
T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 256 0 0 0 0 0 0
U 0 0 0 0 0 0 0 0 0 0 0 0 113 0 0 0 0 0 0 0 140 3 0 0 0 0
V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 81 175 0 0 0 0
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 256 0 0 0
X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 256 0 0
Y 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 51 0 0 203 0
Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 256

cross ratios to 26 classes, that is, the specification of Ck

was done by the two strategies described in Section 5.1.5.

5.1.3 Test patterns

Test patterns were synthesized by applying projective dis-
tortions on the original character images with the cross ra-
tio patterns. The projective distortion was simulated by
displacing four corners of a character image for ±δ pix-
els (δ = 0, 4, 8, . . . , 48) in their x and y directions. Thus,
for each value of δ, 256 test patterns were created from a
single original character image. Figure 3 shows several test
patterns synthesized from the same character image of the
class “K”. This figure reveals that there are heavily distorted
patterns in the test patterns.

5.1.4 Shape similarity

As noted in Section 3, the proposed technique can employ
any shape similarity (or the score given by any conven-
tional recognizer) between a reference pattern (i.e., an orig-
inal character pattern) and an input pattern. In the experi-
ment, the following two matching techniques are employed
to evaluate the shape similarity.

• Rigid matching · · · This is a technique to obtain a sim-
ilarity score by simple superimposing.

• Elastic matching· · · This is a technique to obtain a sim-
ilarity score after fitting the reference pattern to the in-
put pattern nonlinearly [7]. The elastic matching tech-
nique employed here possesses enough flexibility for
compensating projective distortions.

Note that both techniques used simple gray-level as their
pixel feature.

Figure 4 shows recognition accuracy attained by the
shape similarities by the above two matching techniques.
The rigid matching was very sensitive to projective distor-
tions and its recognition accuracy decrease drastically ac-
cording to the increase of δ. On the other hand, the elas-
tic matching is rather robust to the projective distortions;
its recognition accuracy does not decrease for δ ≤ 28. For
more heavy distortions, however, its accuracy decreases like
the rigid matching.

Table 1 is the confusion matrix by the shape similarity of
the elastic matching for 256× 26 test data of δ = 4. Most
of “N” were misrecognized as “H” or “M” with the shape
similarity alone because their shapes become similar after
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Table 2: Naive and optimal assignments of cross ratios to 26 classes. Note that the assignment is optimized for elastic
matching.

class A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

K = 4 naive 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2
opt. 1 1 1 1 2 3 3 2 1 2 1 2 3 4 4 2 2 4 1 4 2 1 1 4 3 2

K = 12 naive 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2
opt. 1 2 3 4 5 6 7 5 4 8 2 9 6 10 11 8 9 10 1 11 12 3 4 11 7 12

K = 20 naive 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6
opt. 1 2 3 4 5 6 7 8 9 10 11 12 6 13 14 15 16 17 18 14 19 3 9 20 7 19
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Figure 5: Extraction accuracy of cross ratios.

nonlinear fitting of the elastic matching.

5.1.5 Assignment of cross ratios to classes

The following two strategies were used for assigning cross
ratios to classes.

• Naive assignment · · · K cross ratios are assigned to
|C| classes by a simple numerical order.

• Optimal assignment · · · According to the discussion of
Section 4, the assignment was optimized by the algo-
rithm proposed in [6].

Table 2 shows the naive assignment and the optimal as-
signment for the elastic matching at K = 4, 12, and 20. As
shown in this table, the same cross ratio is assigned to the
classes “C” and “V”, by the optimal assignment at any K .
This fact means that “C” and “V” are not confusing classes
for the elastic matching.

5.2. Extraction accuracy of cross ratios
Figure 5 shows the extraction accuracy of the cross ratios
as a function of δ. This graph indicates that the cross ra-
tios can be extracted very accurately even under heavy dis-
tortions. By comparing Figures 5 and 4, it is shown that

this accuracy is often 10 (or more) times higher than the
recognition rates by shape-similarities. Thus, the cross ra-
tio is more reliable information than the shape similarities
for camera-based character recognition.

The graph at K = 26 in Fig. 5 shows the recognition
rate attained by using the cross ratio alone and that a recog-
nition rate exceeds 98% without using any character shape
information if δ ≤ 24.

Extraction failures are mainly due to slight errors (such
as ± 1 pixel) of l′1, l

′
2, l

′
3 by insufficient resolution. In fact,

at K = 26, 85% of extraction failures are “near-misses”
that rk was detected as rk±1. More serious failures that rk

was detected as rk±Δ (Δ ≥ 2) are 10%. The remaining 5%
are the failures that the guide was not detected.

5.3. Recognition accuracy by using cross ratio
and shape similarity

Figures 6 and 7 are the recognition rates attained by us-
ing the extracted cross ratios and the shape similarity ac-
cording to the procedure of Section 3. As shape similari-
ties, the rigid matching score and the elastic matching score
were used in Fig. 6 and 7, respectively. In both cases,
K ∈ {4, 12, 20, 26} cross ratios were assigned to |C| = 26
classes according to the naive assignment. (See Table 2, for
the naive assignment at K = 4, 12, and 20.)

Those two figures firstly indicate that recognition rates
are drastically improved from the rates of Fig. 4, that is, the
rates attained by the shape similarities. At δ = 4, for ex-
ample, the recognition rate attained by the shape similarity
by the elastic matching was 89.8% and improved to 97.4%,
99.1%, and 99.97% with K = 4, 12, and 20 cross ratios,
respectively.

This improvement is achieved by removing the ambigu-
ity in the shape similarity using the extracted cross ratio.
For example, as indicated by the column “H” of the con-
fusion matrix of Table 1, there are two correct classes can-
didates, “N” and “H”, for an input character recognized as
“H” by the elastic matching score. Fortunately, if its cross
ratio is extracted correctly, the correct class is chosen from
the candidates. This is because as shown in Table 2, differ-
ent cross ratios are assigned to classes “N” and “H” by the
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Figure 6: Recognition rate by rigid matching and cross ra-
tio. The naive assignment was used here.
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Figure 7: Recognition rate by elastic matching and cross
ratio. The naive assignment was used here.

naive assignment (for any K), and therefore the true class
of the input character can be determined by the extracted
cross ratio.

On the other hand, Figures 6 and 7 also show the use-
fulness of the shape similarities. In fact, when δ ≤ 16, the
recognition rate attained by K = 20 exceeds that attained
by K = 26 (where the recognition is done by only the ex-
tracted cross ratio). This is because, if many cross ratios are
used (e.g., K = 26), their extraction accuracy is slightly
degraded as shown in Fig. 5. Thus, it will be a reasonable
strategy to (i) use as many cross ratios as possible under
the condition that those cross ratios can be extracted near-
perfectly and then (ii) remove the remaining ambiguity by
a shape similarity.

5.4. Naive assignment versus optimal assign-
ment

Figure 8 shows the recognition accuracies with two differ-
ent assignment strategies, i.e., the naive assignment and the
optimal assignment of Section 5.1.5. The shape similarity

90

92

94

96

98

100

0 4 8 12 16 20 24 28 32 36 40 44 48

perspective distortion, δ

re
co

gn
iti

on
 r

at
e 

(%
)

K=4 (optimal assignment)
        (naive assignment)
K=12(optimal assignment)
        (naive assignment)

Figure 8: Naive assignment versus optimal assignment. The
latter can attain higher rates under the same number of cross
ratios, K .

Figure 9: MICR font called C.M.C.7.

by the elastic matching was used here.
This result shows that the optimal assignment outper-

forms the naive assignment for any δ and K . This supe-
riority comes from the fact that the optimal assignment can
remove the ambiguity in confusing classes effectively. At
δ = 4, for example, the same cross ratio is assigned to “M”
and “U” by the naive assignment as shown in Table 2, al-
though “M” and “U” are confusing classes as shown in Ta-
ble 1. On the other hand, different cross ratios are assigned
to “M” and “U” by the optimal assignment since a confu-
sion matrix used for the optimization confesses that “M”
and “U” are confusing classes. It is noteworthy that opti-
mally assigned 4 cross ratios outperform naively assigned
12 cross ratios for δ ≤ 20.

6. Relation to other techniques
6.1. OCR/MICR fonts and DataGlyph
The proposed technique is closely related to so-called
“OCR fonts” and “MICR (magnetic ink character recog-
nition) fonts”, which were proposed in the dawn of
OCR/MICR research [3]. In those fonts, class informa-
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tion is embedded into their shapes. Figure 9 shows the
MICR font called C.M.C.7, where each character is com-
prised of six vertical lines with class-dependent intervals.
DataGlyph [4, 5] is a more recent font where some data is
embedded as a fine hatching pattern.

Those conventional fonts are not designed to be robust
against perspective distortions. For example, the interval of
the vertical lines of the C.M.C.7 font will vary according
to perspective distortions. Thus, for camera-based recogni-
tion, some dewarping process, which itself is not a trivial
task in general, should be performed on those fonts in ad-
vance.

6.2. Barcode and watermark

Barcodes are also related to the proposed technique. If
a barcode represents a text, we can read the text by a
barcode scanner with very high accuracy. Recently, two-
dimensional barcodes, such as QR code, have been de-
veloped as pictorial codes having larger data capacities.
Among them, the QR code is promising because it can be
read under perspective distortion.

The barcodes have the following drawbacks when they
are used for representing some text data:

• Barcodes are machine-readable and not human-
readable. Thus, users cannot know in advance what
a barcode represents.

• Barcodes cannot allow “partial reading” that a user
tries to read only a part of an entire text.

• Barcodes are printed separately from character images.
Thus, barcodes should be “conspicuous” enough to
show their existence. This means that barcodes will
spoil the design of documents. The longer texts be-
comes, the larger, i.e., the more unsightly, a barcode
becomes.

Watermark is invisible or near-invisible data representa-
tion and often embedded into the background of a docu-
ment. Watermark also has the first and the second draw-
backs of the barcodes because generally it is encoded end
embedded by a special manner (i.e., not human-readable)
and has no explicit correspondence to individual characters
(i.e., not partially readable). On the other hand, watermark
may avoid the third drawback of the barcodes, i.e., unsight-
liness, because of its invisibility; however, this fact leads a
conflicting situation. If a watermark is perfectly concealed
on a document to avoid the unsightliness, a user cannot de-
tect it and thus cannot extract an embedded text from the
watermark. Hence, if a watermark is used, a “visible mark”
that indicates the location of the watermark is necessary.

7. Conclusion and future work
For camera-based character recognition as easy and accu-
rate as bar-code reading, the embedment of class informa-
tion into each character image is investigated. The class
information is represented as a horizontal stripe pattern,
called a cross ratio pattern, and the character image is
printed with the pattern. Since cross ratio is invariant to
projective distortion, the same class information can be ex-
tracted from character images captured at an arbitrary cam-
era angle. Experimental results showed that (i) the cross
ratio can be extracted from distorted character images with
very high accuracy and (ii) the cross ratio can enhance the
recognition performance of conventional matching-based
recognizers.

Future work will focus on the following points:

• Experiments using character images captured by a
camera.

• Improvement of the design of the cross ratio patterns.
It is also possible to use some distortion invariant other
than cross ratio.

• Improvement of shape similarity. If the confusion ma-
trix by the shape similarity can be sparse, the number
of cross ratios can be saved.

• Embedment of data other than class information. For
example, copyright information to character strings
can be embedded by cross ratio patterns.

Pattern recognition research has a long history of the
struggle to recognize image patterns having high human-
readability and low machine-readability. Handwritten char-
acter recognition is a typical example. In upcoming ubiq-
uitous computing age, image patterns are often exposed
to computers via cameras and therefore often to be ac-
quired/recognized by computers. Thus, it will become
more important to use image patterns having not only high
human-readability but also high machine-readability as a
medium for human-machine communication. The proposed
character image with the cross ratio pattern can be a promis-
ing candidate as the medium.
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