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Improvement of Trademark Retrieval Using Pseudo Relevance
Feedback

ABSTRACT
As the number of registered trademarks become larger, the demand
for trademark retrieval systems with high accuracy has grown to
reduce the burden of human searchers. In particular, precision at
high recall is important to avoid erroneous registration of newly
submitted trademarks. In this paper we propose a method to realize
this by using pseudo relevance feedback, which is a method to
search again by using an expanded query formed based on top
ranked results of the first search. From the experimental results
with the database of about 620, 000 trademarks, we have achieved
the improvement of precision by 4% at 100% recall as compared to
the method without the feedback.
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1 INTRODUCTION
The workload of the trademark examination increases because
more than 100, 000 trademarks are applied each year, and naturally,
the number of registered trademarks is increasing year by year.
Trademark examination is the task of judging the similarity be-
tween a newly submitted trademark and registered trademarks in
three points: similarities of appearance, appellation, and concept.
Currently, it is impractical to evaluate similarity for all registered
trademarks. The searchers narrow down registered trademarks by
keyword search on the basis of elements associated with a newly
submitted trademark and then judge similarity one by one visu-
ally. However, because of a large number of registered trademarks,
visual comparison or inspection is the burden of the trademark
examiner. Also, since the search word used in the keyword search
is determined by the examiner subjectively, search omission occurs
for the similar trademark not associated with the search word.

In order to solve this problem, it is necessary tomake a trademark
retrieval systemwith high accuracy. In particular, the apparent simi-
larity is the most fundamental, which covers many cases. Therefore,
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in this paper, we focus on the similarity of the appearance and pro-
ceed with the discussion.

Generally, the most important requirement for creating a trade-
mark retrieval system is to prevent omission of search in order to
avoid erroneous registration. In other words, high recall is required.
Under this condition, it is necessary to reduce the retrieval of dis-
similar images in order to save the workload of examination. In
other words, high precision is preferable under high recall.

A lot of researchers have studied trademark retrieval systems
of appearance similarity. Most of these systems are based on im-
age information, and the methods of using local features are on
the mainstream. The methods using local features focus on local
information of images and find the correspondence between parts
of images. However, since the correspondence does not completely
represent the similarity of trademarks, retrieved images are some-
times incorrect. So recall of the methods using local features is
high, but precision tends to be low. Therefore, various methods
for improving precision have been proposed in recent years. One
of them is “rejection of feature points based on reference point"
proposed by Klinkigt et al. [11] (Hereinafter, the reference point is
abbreviated as RP).

Klinkigt’s method is the method to recognize a specific object
in the database of natural images. In recent years, it has also been
applied to the field of character recognition by Matsuda et al. [14].
In order to recognize characters in natural images, they used “rejec-
tion of feature points based on affine transformation" in addition
to “rejection of feature points based on RP", so that precision is
improved without decreasing recall and processing speed. How-
ever, Klinkigt’s method has been used only for natural images and
Matsuda’s method has been used only for character images, and
it is not known whether they work effectively for line graphics
such as trademarks. In our previous method, We applied Klinkigt’s
method and Matsuda’s method into the method using local features
and they have proved that these methods work effectively with line
graphics such as trademarks. Nevertheless, our previous method
has a precision of 62.5% when the recall is 100%, and it still has
room for improvement.

To further improve the precision, we apply a technique called
pseudo relevance feedback [1][5][12][13] to our previous method,
where pseudo relevance feedback performs automatic feedback by
assuming that the top N cases of retrieval results are relevant to
the query. From the experimental results with the database of about
620, 000 trademarks, our proposed method with pseudo relevance
feedback succeed in improving precision by 4 percent points at
100% recall as compared with the method without the feedback.

2 RELATED STUDIES
2.1 Trademark retrieval method
There are two kinds of methods to retrieve trademarks by using
images. Some use global features and the others use local features.

Submission ID: 352. 2018-08-16 14:23. Page 1 of 1–8.

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4


Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICVGIP’18, December 2018, Hyderabad, India

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

For example TRADEMARK system [10] proposed in 1992 uses
global shape features such as the spatial frequency and contrast
of the image. ARTISAN [2] proposed in 1996 is a prototype sys-
tem that conducts trademark image search at the United Kingdom
Patent Office. As image features, global shape features such as the
area of a polygonal convex hull of boundary and the length of
the longest boundary chord are used. As mentioned above, the
trademark retrieval methods in the 1990s have mainly used global
features. However, it is not possible to evaluate partial similarity
only by measuring the shape similarity of a whole image. Therefore,
recall and precision of methods using global features tend to be low.
For this reason, in recent years, trademark retrieval methods with
local features are on the mainstream because they can measure
partial similarity. SIFT feature is the most popular local feature
because it is robust against image rotation, scale change, and illu-
mination change. Wang et al. [15] and Fu et al.[3] proposed search
methods using SIFT features. These methods have contributed to
the retrieval of similar images for trademarks. However, they have
not achieved sufficient precision yet. In addition, the number of
images in the dataset they used for evaluation was only 3, 621 and
12, 000, respectively. It is not a practical setting because the number
of real trademarks is enormous.

2.2 Pseudo relevance feedback
Pseudo relevance feedback has been mainly used for improving
accuracy of document retrieval [1][5][12][13]. In recent years it has
also been used for improving the accuracy of image retrieval[4][7].
Among them, Joly’s method [8] is one example of applying modified
pseudo relevance feedback to a trademark retrieval and determined
the images used as feedback with a threshold value. This method
worked effectively for some queries, but there was a problem that
it does not work well for queries with a small number of features.
Their method was also experimented only on 10, 000 trademark
images dataset, whereas we conduct on 620, 000 trademark images.

3 BASELINE METHOD
In this paper, we will verify the effectiveness of applying pseudo rel-
evance feedback to our previous method (Hereinafter, our previous
method is called the baseline method). In the baseline method, the
flow of the whole process is divided into “storage phase" and “search
phase" as shown in Fig. 1. "storage phase" is to store trademark im-
ages in the database. Local features extracted from stored trademark
images (hereinafter referred to as database images) are registered in
the database. "Search phase" is composed of four processes. Details
of each process are described below.

3.1 Local feature extraction
We extract local features from trademark images both in Storage
phase and Search phase as shown in Fig. 1. In this research, we use
the SIFT features, which have the parameters of “orientation" and
“scale" of a local region in addition to an information of the bright-
ness value on the image. It is not necessary to use the information
on “orientation" and “scale" in past researches, but it plays a central
role in RP processing.

Figure 1: A flow of trademark retrieval processing

3.2 Matching process
We search for similar local features in the database to those obtained
from a query image. The similarity between two local features is
based on the distance between vectors of local features. However,
when calculating distances to all the local features (the number
of n) obtained from the query image for all the local features (the
number of m) in the database, a long processing time of O(mn)
is required. Therefore we use an approximate nearest neighbor
search method to reduce processing time. The approximate nearest
neighbor search method reduces the number of candidates which
the distance is calculated by using approximate distance values. We
use the Bucket Distance Hashing method [6], which is one of the
most efficient approximate nearest neighbor search methods. This
method selects the nearest neighbor candidates by using the multi-
sequence algorithm without comparing data. See [6] for details.
When we use this method, we need to determine parameters k
and C , where k is the parameter of k−nearest neighbor and C
is the number of local features which are roughly searched by
approximate distances.C local features are searched by approximate
distances, and the result is set up to the upper k neighborhood
among them. We use these optimal parameters that are determined
in preliminary experiments.

3.3 Verification process
In the matching process, the matching is not always suitable from
the viewpoint of a human visual system because the matching is
simply based on the distance of local features. For example, er-
roneous matching may occur when a simple pattern repeatedly
appears on various trademarks. Figure 2 shows examples of erro-
neous matching in a simple pattern. As shown in Fig.2, the SIFT
features in database images match the SIFT feature in the query
image although they are not similar. To solve this problem, we con-
sider the information of the arrangement of matched SIFT features
in addition to individual matchings. A database image is recognized
as a similar image to the query image if a sufficient number of

Submission ID: 352. 2018-08-16 14:23. Page 2 of 1–8.



Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Improvement of Trademark Retrieval Using Pseudo Relevance Feedback ICVGIP’18, December 2018, Hyderabad, India

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: Examples of erroneousmatching in the simple pat-
tern

matched features remains even after rejection which is the process
of removing low reliability of matching features.

In order to improve the accuracy of SIFT matching, “rejection of
feature points based on RP" and “rejection of feature points based
on affine transformation" are used. Each of these is described below.

3.3.1 Rejection of feature points based on RP. This process con-
sists of the following four steps. Steps 1 and 2 are shown in Fig. 3,
and step 3 is shown in Fig. 4.

(1) First, we define the center of the database image as RP and
find the direction and distance to the RP of each local feature.

(2) Next, we project the local features of the database image on
the query image.

(3) After projection, we adjust the scale and the orientation of
the all local features on the query image.

(4) Finally, we calculate the coordinates of the RP on the query
image from the vector to the RP.

When the above processing is applied to all the matched local
features, the RP is calculated at one place on the query image if
the database image has a similar part to a part of the query image.
However, the calculated coordinates of RPs do not always indicate
one place due to the estimation errors of scale and orientation.
Therefore, when n points or more exist in a circle with radius r , it
is assumed that they are concentrated in one place. Simultaneously,
local features outside the circle are rejected.

By this process, correspondence relationships of similar parts
are obtained between the query image and the database image.
At this time, as shown in Fig. 5, the similar parts with different
arrangement can be detected, where each similar part in the query
image has individual RP. Therefore, by individually evaluating the
local features belonging to each RP, it can be determined whether
the part corresponding to the RP in a query image is similar to a
part in a database image. While, when there is no RP, the database

Figure 3: A method of removing low reliability of matching
features with reference points in first step and second step

Figure 4: A method of removing low reliability of matching
features with reference points in third step

image is rejected which means it is regarded as a low similarity
image.

3.3.2 Rejection of feature points based on affine transformation.
In order to investigate the reliability of the similar part for each
RP obtained in the “rejection of feature points based on RP", it
is verified whether the positional relation of the local features is
totally correct or not. First, an affine transformation matrix M is
obtained for RP calculated on the query image, where the affine
transformation is the transformation from the local features on
a database image to those on the query image. Next, using the
calculated affine transformationmatrixM , the verified local features
on the database image are transformed into the query image, and
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Figure 5: Detection of similar parts with different arrange-
ment in an image by reference points

the positional deviation of each local feature is measured. The
local feature is rejected if the positional deviation is larger than
the threshold r ′ because it is regarded as an erroneous matching.
In addition, after the rejection process, database images with less
number of local features than n′ are rejected.

While, the affine transformation matrixM can be decomposed
into five matrices: translation T , scale L, rotation R, independent
scaling A and shear S .

M = SARLT (1)
The process of obtaining matrix M sequentially calculates the

geometric transformation parameters in the order of translation T ,
scale L, rotation R, independent scaling A and shear S . The outline
is shown in Fig. 6. will be described below. See [14] for details.

The translation T is obtained by RP correspondence. About the
scale L, the distances between the RP and the local feature is ob-
tained from both of the query image and the database image. And
we obtain the scale L by taking the ratio of the distances. Since
there are many pairs of RP and local features, the median value
of the ratios obtained from the combination of all RP and local
features is used as the estimated ratio. About rotation R, we obtain
the line angles between RP and the local feature with the query
image and the database image, and we calculate the difference of
those angles. Likewise, the average of obtained rotation angles is
used as the estimated rotation angle because a number of pairs of
RP and local features are often obtained. Through the above, three
components of translation T , scale L, rotation R are obtained. At
this stage, these transformations are applied to the database image.
The components of the geometric transformation remaining after
this are independent scaling A and shear S . For independent scal-
ing A, scales are measured separately in the horizontal direction
and the vertical direction from the pair of RP and local features.
Then, the ratios of the horizontal scales and the vertical scales be-
tween the query image and the database image are obtained, and

Figure 6: Matrices used for affine transformation

the median value of those is taken to be the estimated scale. About
shear S , we focus on the horizontal shear since there are many
deviations in the horizontal component. The variable s of shear S is
calculated as s = −(x ′s − xs )/ys because the shear is represented as
x ′s = xs + sys , where (xs ,ys ) and (x ′s ,y′s ) are the coordinates before
and after shearing, respectively. The median value of the variables
s for all combination of RP and the corresponding local features is
used as the estimated variable of shear.

3.4 Output process
All the database images matched with a query image are retrieved.
Basically, they are ranked by similarity, which is the number of
matched features after rejection. We retrieve the rejected database
images after the not rejected database images. The similarity p used
for ranking database images that were not rejected is determined
as follows:

p = f /√q (2)
where f is the number of local features after “rejection of feature
points based on affine transformation", q is the total number of
local features extracted from the database image. The ranks of
database images with a larger number of local features tend to be
higher. Therefore, we apply the normalization by √q to prevent the
tendency. The ranking of rejected database images is also ranked
by similarity shown below.

p′ = f ′/√q (3)

where f ′ is the number of local features before “rejection of feature
points based on RP."

4 PSEUDO RELEVANCE FEEDBACK
Pseudo relevance feedback, also known as blind relevance feedback,
is the retrieval method to expand queries. First, we retrieve the top
N ranked images by using the original query image. And then we
use them as queries as shown in Fig. 7. By using this method, it
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Figure 7: Pseudo relevance feedback

is possible to retrieve relevant images missed in the first retrieval
in order to improve the performance. This method is easy to im-
plement as it automatically determines the query image. But if the
images of the top N are not relevant images, the performance may
be degraded.

We apply this method to the baseline method and calculate the
similarity p′′ as follows:

p′′ = α
b
√
q
+ (1 − α)

∑N
j=1 dj√
q

(4)

where b, dj and α are the number of local features after “rejection
of feature points based on affine transformation" by using original
query image, the number of local features left without being rejected
by using the top j ranked images, and the weight of the query image,
respectively.

5 EXPERIMENT
In this paper, in order to verify the effectiveness of pseudo relevance
feedback, we conducted a comparison with the baseline method.
In the experiment, recall and precision were used as performance
measures. When calculating recall and precision, 11 point inter-
polated average precision [9] was applied. 11 point interpolated
average precision is the interpolated precision of looking at 11 re-
call levels (0.0, 0.1, 0.2, ..., 1.0). We averaged these scores across all
of the different queries to find the score.

The experiment consists of the following two steps. First, we
investigated the relationship between the accuracy and the number
N of images used as the feedback, where N = 1, 3, 5. Next, we
compare the proposed method with the best accuracy with the
baseline method.

5.1 Normalization of images
Trademark images were normalized by the following procedure as
shown in Fig. 8.

(1) First, the binary image of a trademark image is generated.

Figure 8: Image normalization

(2) Next, we cut out the figure part of the binary image.
(3) Then, in order to resize the clipped region without changing

its aspect ratio, white pixels are padded so that the short side
of the region may have the same length as the long side.

(4) Finally, the normalized image is obtained by adding the ap-
propriate margin surrounding the figure part.

The reason why the margin should surround the figure part is
to extract reliable SIFT features. Using the normalization of images,
an image of 920 × 920 pixels was created with figure part at 320 ×
320 pixels. The resolution was determined based on the result of
preliminary experiments.

5.2 Dataset
We collected 627, 326 trademark images registered in Japan Patent
Office and used them as the dataset. 623, 101 images were used
as database images, and the remaining 4, 225 images were used as
query images, which have 59, 654 relevant images. Three trademark
searchers and 28 students determined visually relevant images in
database images to an image in query images one by one. In this
work, they decided relevant images by judging whether there is the
same shape on a part or whole of an image without considering
differences in resolution or in color.

5.3 Parameters
Fixed parameters in the experiment are as follows.

• The number of local features which are roughly searched by
approximate distances C = 10, 000

• The parameter of k−nearest neighbor k = 50
• Radius used in the rejection of feature points based on RP
r = 100

• Threshold of the positional deviation used in the rejection
of feature points based on affine transformation r ′ = 100

• Threshold of the number of the feature points used in the
rejection of feature points based on RP n = 4

Submission ID: 352. 2018-08-16 14:23. Page 5 of 1–8.
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Figure 9: 11 point interpolated average precision by pseudo
relevance feedback

Figure 10: 11 point interpolated average precision for com-
paring proposed method (N=1) with the baseline method

• Threshold of the number of the feature points used in the
rejection of feature points based on affine transformation
n′ = 4

• The weight of pseudo relevance feedback α = 0.5.
These parameters are fixed with the highest computational speed
and accuracy based on the preliminary experiments.

5.4 Result
First, we investigated parameters with the highest accuracy by
pseudo relevance feedback. The retrieval result of each method is
shown in Fig. 9. The proposed method (N = 1) was the highest
precision at all recall. Then, most images used as feedback were

Figure 11: An example in which the accuracy was improved
by feeding back a relevant image to the query image. The up-
per row shows the query image, the middle row shows the
retrieval result of the baseline method and the lower row
shows the retrieval result of the proposed method (N = 1).
An image surrounded by a red rectangle is the relevant im-
age.

similar to the corresponding query images, which were 3523 out
of 4225 top ranked images (83%). As shown in Fig. 9, the perfor-
mance of the proposed methods (N = 3, 5) is inferior to that of the
proposed method (N = 1). It seems that this result was caused by
adding dissimilar images in feedback.

Second, we compared the proposed method (N = 1) with the
baseline method as shown in Fig. 10. The precision was improved
by 3.90 percent points when the recalls of both methods were 100%.

An example of improvement by the proposed method (N = 1)
is shown in Fig. 11. In this example, the baseline method retrieved
five relevant images, while the proposed method (N = 1) retrieved
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10 relevant images. Moreover, all the top eight retrieval images in
the proposed method (N = 1) were similar to the query image.

In addition, the precision of the baseline method was 0.6 percent
points higher than the proposed method (N = 1) when the recalls
of them were 0%. This is because a dissimilar image was the top
ranked image for some queries. As shown in Fig. 12, we can see
that the ranking of relevant image went down from second to
21st because the feedback image (the top ranked image) was not
a relevant image. Since it is necessary to prevent the omission of
search at the trademark examination, precision at recall 100% is
the most important. Therefore, we can show the good effects of
the method with pseudo relevance feedback added to the baseline
method.

In addition, we will show the good and bad retrieval examples
in detail. Fig. 13 shows an example with the improved the retrieval
accuracy. In this example, the top ranked image of the baseline
method is similar to a part of the query image. Then, the proposed
method (N = 1) retrieved more relevant images. On the other
hand, Fig. 14 shows an example of the worsened accuracy. In this
example, the proposed method (N = 1) could not retrieve images
representing “aluminum" in Japanese in the upper part. The reason
for this is that the top ranked image did not include the word
“aluminum" although the query image included it. This lowered the
rank of the pattern. However, it is not so common case. Therefore,
it was found that the accuracy was improved by using pseudo
relevance feedback.

6 CONCLUSIONS
In this paper, we add “pseudo relevance feedback" to our previous
method. In order to confirm the effectiveness, we conducted two
experiments. In the first experiment, we investigated how many
images are needed as feedback in order to get the highest accuracy.
As a result, the method using the top ranked image as feedback
got the best performance. Next, we compared the proposed method
(N = 1) with the baseline method. In the second experiment, we
have achieved the improvement of precision by 4 percent points at
100% recall as compared with the baseline method.

Future work includes to implement a retrieval method that can
apply the similarities of appellation and concept to our trademark
retrieval method.
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