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Abstract

Approximate nearest neighbor search (ANNS) is a basic
and important technique used in many tasks such as object
recognition. It involves two processes: selecting nearest
neighbor candidates and performing a brute-force search
of these candidates. Only the former though has scope for
improvement. In most existing methods, it approximates the
space by quantization. It then calculates all the distances
between the query and all the quantized values (e.g., clus-
ters or bit sequences), and selects a fixed number of can-
didates close to the query. The performance of the method
is evaluated based on accuracy as a function of the num-
ber of candidates. This evaluation seems rational but poses
a serious problem; it ignores the computational cost of the
process of selection. In this paper, we propose a new ANNS
method that takes into account costs in the selection pro-
cess. Whereas existing methods employ computationally
expensive techniques such as comparative sort and heap,
the proposed method does not. This realizes a significantly
more efficient search. We have succeeded in reducing com-
putation times by one-third compared with the state-of-the-
art on an experiment using 100 million SIFT features.

1. Introduction

Finding the nearest neighbor (NN) of a given query,
called nearest neighbor search (NNS), is a simple but impor-
tant task. An approximate nearest neighbor search (ANNS)
is an NNS in which an approximation is introduced. ANNS
problems are actively studied and widely applied to many
applications such as near-duplicate detection [13], large-
scale object recognition [21, 26, 11, 14, 12], document im-
age retrieval [25], camera-based character recognition [10,
9]. The required features for ANNS methods are accuracy
in finding the true NNs, and efficiency in time and space. In
this paper, we focus on the relationship between accuracy
and computational efficiency.

Taking into account the relationship between accuracy

and computation times is inherent in NNS problems. If the
computation time is not an issue, NNS problem can always
be solved by a brute-force search, i.e., calculating all the
distances between the query and the data. This naive so-
lution is not practical because it can take a long time, espe-
cially for large datasets. A way to reduce computation times
is to reduce the data submitted to the brute-force search.
That is, a limited number of data, where we call NN can-
didates, is selected in the selection process followed by the
brute-force search. Only in the selection process is there
occasion to introduce improvements in the NNS problem
and it needs to be fast and accurate. Lengthy computation
times in selecting the NN candidates negates the advantage
in reducing the data. By not being accurate in selecting NN
candidates, the number of NN candidates needs augment-
ing to compensate for the low accuracy. Computation times
though would lengthen in the brute-force searches.

The performance of most existing methods is evaluated
based on accuracy as a function of the number of candi-
dates. The number of candidates determines computation
times for brute-force searches. However, it is independent
of the computation times of the selection process. Hence
papers ignoring the computation time of the selection pro-
cess tackle only a part of the ANNS problem1.

Some papers take into account computation cost prop-
erly (e.g., [20, 12, 2]). Among them, the most efficient
method is the inverted multi-index (IMI) [2]. However, on
the question, “What is the most efficient way to select NN
candidates?,” we found that the method does not capture the
essence of the NN candidate selection. An intuitive notion
of what we mean is the following. Imagine that there are
𝑛 data and a task to find NN candidates of size 𝑘 (𝑘 < 𝑛).
The worst approach is sorting them all, a task which takes
time 𝑂(𝑛 log 𝑛). A better way is to use a partial sort tech-
nique using a priority queue. That is, each datum is added
to the priority queue and the best 𝑘 data are kept. This is

1 One might believe that computation times for the selection process
can be ignored in comparison with that for the brute-force search. How-
ever, a good ANNS method reduces the computation times for brute-force
searches. As a result, these computation times are not the dominant factor.
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known to take time 𝑂(𝑛 log 𝑘). IMI takes this approach.
However, there is a faster sort algorithm—the bucket sort.
It can complete the task in time 𝑂(𝑛) because it does not
perform comparisons between data. Thus if we can prepare
appropriate buckets, the selection of NN candidates can be
much faster. This makes sense because our purpose is just
finding NN candidates; there is no need to arrange buckets
in the ascending order of their distances.

Towards a practically fast ANNS method for large scale
datasets, we propose a more efficient ANNS method com-
pared with others, which involves the most efficient way
of finding NN candidates. The proposed method is named
bucket distance hashing (BDH). In the experiments, we
compared the proposed method with various representative
ANNS methods on the same platform with respect to the
criterion, recall as a function of computation time, in addi-
tion to the commonly used criterion, recall as a function of
the number of candidates. Although we focus on the NN
search, the same technique is directly applicable to the k-
NN search problem.

2. Related Work

For an efficient selection of NN candidates, data are usu-
ally indexed in advance. Based on the structure for index-
ing, ANN methods can be divided into tree-based and hash-
based. Hash-based methods are also classed either as data
independent or data dependent. The former does not use
data for indexing though the latter does.

2.1. Tree-based approach

FLANN is a representative tree-based method [20]. It
automatically selects the best method among the random-
ized kd-tree [24], the hierarchical k-means [21] and the
brute-force search, and tunes parameters for a given dataset.
In the experiments, randomized kd-tree and hierarchical
k-means were compared with the proposed method as
FLANN itself did not work for large datasets.

2.2. Hash-based data independent approach

Locality sensitive hashing (LSH) is a representative
hash-based data independent method [4, 1]. There are many
improvements (e.g., [19, 30]). However, its performance is
known to be worse than the data dependent indexing meth-
ods. We also confirmed that LSH is far slower than the data
dependent methods that follow.

2.3. Hash-based data dependent approach

The data dependent methods can be categorized into
those performing the selection of NN candidates in the Eu-
clidean space and the Hamming space.

Selection in the Euclidean space In this category, the
methods use quantization and data compression techniques.

Vector quantization (VQ) is used in some ANNS methods
such as VQ-index [27] and IVFADC [12]. Product quan-
tization (PQ) is used in IMI [2]. As mentioned above, IMI
outperforms IVFADC. Transform coding is used in [3]. The
process can be regarded as equivalent to scalar quantization
(SQ). From the category, we selected IVFADC and IMI for
the evaluation; both are reviewed in the next section. Al-
though we implemented transform coding, it was not com-
parable to those two.

Selection in the Hamming space In this category, data
are represented by binary codes. Their use helps re-
duce memory usage and computation times in Hamming-
distance calculations because of the efficient bitwise XOR
operation. Because of these good properties, many ANNS
methods based on binary codes have been proposed (e.g.,
[29, 16, 17, 22, 6, 7, 28, 15]). Among them, spectral hash-
ing (SH) [29] is a representative method.

To achieve high recall, long codes, of length 128 or 256
bits long, are often used. Actually handling such a long
code is not easy. A baseline method for finding NN can-
didates in Hamming space is the linear search which, while
fast, is intractable when applied to large datasets. One might
think that the tree or hash structure helps to achieve sub-
linear searches. However, the number of data having the
same Hamming distance to the query explode as the dis-
tance increases, which prevents the NN candidate selection
process from being efficient [31]. As pointed out in [16],
one idea is to use the original LSH for bits [8]. However,
the data independent approach is inefficient as mentioned
above. Another idea might be to apply more sophisticated
approaches used in existing ANNS methods designed for
Euclidean space. We applied the proposed selection method
of NN candidates to SH. However, the performance did not
compare well with other representative methods.

3. Existing Hash-based Indexing Methods Us-
ing Vector and Product Quantization

Reviewing IVFADC and IMI in this order helps under-
stand the proposed method BDH. Thus in this section, we
present them in greater detail than Sec. 2.

3.1. IVFADC

IVFADC [12] indexes data using VQ in selecting NN
candidates efficiently. Data are divided into clusters using
the k-means clustering algorithm. Given a query, the clus-
ters close to the query are searched and data belonging to
the clusters are selected as NN candidates. There is a pos-
sibility that some data close to the query are not included in
the NN candidates. However, VQ is known to be the best
quantization method in respect to quantization error for the
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same number of clusters [5]. Thus, it is expected to maxi-
mize the accuracy of NN candidate selection.

3.2. Inverted multi-index (IMI)

As a better solution than IVFADC, Babenko and Lem-
pitsky proposed IMI [2], which uses PQ instead of VQ.
PQ is an intermediate quantization method between SQ and
VQ; a vector space is divided into subspaces and then VQ
is applied to the subvectors in each subspace. PQ gener-
ally produces larger errors than VQ with the same number
of clusters. Nevertheless, computation times to achieve the
same recall can be reduced with the multi-sequence algo-
rithm (MSA).

Figure 1 illustrates an overview of IMI. Referring to the
figure, there are four clusters in the subspace 1 and three
clusters in the subspace 2. The centroids of the clusters are
represented by 𝐶𝑖

𝑗 , where 𝑖 labels each subspace and 𝑗 la-
bels a cluster in the 𝑖-th subspace. Initially, the squared dis-
tances between the query denoted by a star and the centroids
in the subspaces are calculated. The squared distance in the
original space is given by the sum of the squared distances
in the subspaces. Then, if all the distances in the original
space are calculated, the centroids close to the query in the
original space are found. However, it is not necessary to
calculate all the distances in the original space, because cen-
troids in subspaces with large distances cannot contribute to
the process. Hence, they are ignored in MSA.

Figure 2 provides an overview of MSA. In MSA, the
squared distances in each subspace are sorted first. Then,
the centroids in the subspaces are examined in ascending
order of distance. As shown in Fig. 2(a), the first cluster
examined is the direct product 𝐶1

1 ×𝐶2
1 whose squared dis-

tance is 2. The neighboring clusters 𝐶1
2 ×𝐶2

1 and 𝐶1
1 ×𝐶2

2

are selected as candidates to be examined in the next turn.
Figure 2(b) shows the next step when the candidate cluster
𝐶1

2 × 𝐶2
1 whose squared distance is 3 is selected because

its squared distance is the smallest among the candidates.
Then, the cluster 𝐶1

3 × 𝐶2
1 whose squared distance is 6 is

selected as a new candidate. The reason that the cluster
𝐶1

2 × 𝐶2
2 (with squared distance of 5 but hidden in the fig-

ure) is not selected as a candidate is that at least one candi-
date is guaranteed to have a smaller distance than the cluster
(see [2] for more detail). This process lasts until a sufficient
number of NN candidates is obtained.

As seen above, MSA compares the distances between
clusters and arranges them in ascending order of distance.
This is not required in selecting the NN candidates. In this
regard, the method does not capture the essence of NN can-
didate selection. The figures 1 and 2 illustrate the case when
the feature space is divided into two. If it is divided into
more than two, the computational cost expands. Thus it is
reported that IMI performed best when the feature space is
divided into two. We shall show that space division into
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Figure 1: Overview of the inverted multi-index (IMI) when
the feature space is divided into two.
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Figure 2: Overview of the multi-sequence algorithm
(MSA). The algorithm proceeds in the order from (a) to (f).
The clusters in magenta represent those already selected and
those in cyan are to be examined in the next turn.

more than two achieves better performance with a more ef-
ficient algorithm of selecting NN candidates.

4. Proposed Method

4.1. Overview

As mentioned in Sec. 1, the key idea of the proposed
method is to select NN candidates without comparing data
or clusters. We apply the branch and bound algorithm to the
problem to which MSA is applied.

Figure 3, corresponding to Fig. 1, provides an overview
of the proposed method. In the figure, paths from query (Q)
to the centroids (C) in the original space are drawn. The left
and right halves of the paths represent the squared distances
{𝑑𝑖𝑗} between the query and centroids in subspaces 1 and
2, respectively. 𝑑𝑖𝑗 shares its indexes with 𝐶𝑖

𝑗 . Then, an
upper bound of the squared distance is determined. The
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Figure 4: Proposed algorithm when the upper bound of the squared distance is 8. The algorithm proceeds in the order from
(a) to (d).
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Figure 3: Overview of the proposed method when the fea-
ture space is divided into two. It corresponds to Fig. 1. Paths
from query (Q) to centroids (C) in the original space are
drawn.

upper bound is incremented throughout the process. All the
paths whose total distances are less than an upper bound are
selected in the following process.

Figure 4 illustrates the proposed algorithm when the up-
per bound of the squared distance is 8. The algorithm pro-
ceeds in the order from (a) to (d). In (a), when the upper
bound is set at 8, the path with 𝑑14 = 11 is immediately
removed because the path distance is larger than the upper
bound. Hereafter, each path in the subspace 1 (left half) is
examined. In (b), the path with 𝑑11 = 1 is examined. As the
difference between the path distance and the upper bound is
7, the paths with 𝑑21 = 1 and 𝑑22 = 3 on the subspace 2 (right
half) are selected as NN candidates. In (c), the path with
𝑑12 = 2 is examined. As the difference between the path
distance and the upper bound is 6, the paths with 𝑑21 = 1
and 𝑑22 = 3 on the subspace 2 (right half) are selected as
NN candidates. In (d), the path with 𝑑12 = 2 is examined.
As the difference between the path distance and the upper

bound is 3, the paths with 𝑑21 = 1 and 𝑑22 = 3 on the sub-
space 2 (right half) are selected as NN candidates. Finally,
the same results are obtained as in Fig. 2.

4.2. Preparation

To explain the proposed method in more detail, some
definitions and preparations are given. Let us assume both
query, denoted by 𝒒, and data are represented as vectors.
Let 𝑁 and 𝐷 be the number of data, and the dimensionality
of query and data, respectively. We apply the principal com-
ponent analysis (PCA) to the data so as to minimize the es-
timation error of distance, and obtain the largest 𝑢 principal
components (eigenvalues) 𝑙1, 𝑙2, . . . , 𝑙𝑢 in descending order.
Let 𝑽 =

[
𝒗1 𝒗2 . . . 𝒗𝑢

]
be the matrix of eigenvec-

tors corresponding to the 𝑢 eigenvalues. 𝑢 corresponds to
the dimensionality of the multi-dimensional hash table. We
introduce a way to automatically determine 𝑢 later. Here-
after a cluster refers to a bucket.

4.3. Indexing and parameter tuning

PQ divides the feature space into 𝑝-dimensional sub-
spaces, i.e., a 𝑢-dimensional vector 𝒙 in the subspace
spanned by 𝑢 eigenvectors is represented as 𝒙 =
{𝒙1, . . . ,𝒙𝑚}, where 𝑚 = 𝑢/𝑝. Then, k-means clustering
is applied to each 𝑝-dimensional subspace.

With the exception of 𝑝, we present an automatic param-
eter tuning algorithm. Let us begin with the automatic pa-
rameter selection for k-means clustering. The purpose here
is to divide data into 𝑘𝑖 clusters in the 𝑖-th subspace, and de-
termine {𝑘𝑖} and the centroids of the clusters in subspaces.
Let 𝒙𝑖𝑠 be the 𝑖-th subvector of the 𝑠-th datum, and 𝐶𝑖

𝑗 be
the 𝑗-th centroid in the 𝑖-th subspace. Then, the quantiza-
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Algorithm 1: Adaptive quantization with automatic
parameter tuning. This algorithm finds the number 𝑁bkt

of buckets which are closest to the number 𝑁 of data.
Input: 𝑝, 𝐷, 𝑁
Output: 𝑁bkt, {𝑘𝑖}, {𝐶𝑖

𝑗}
1 𝑚← ⌊𝐷/𝑝⌋; 𝑘𝑖 ← 1, for 𝑖 = 1, . . . ,𝑚; 𝑁bkt ← 1;
2 Calculate the initial {𝐶𝑖

𝑗}, which are means in subspaces;
3 repeat

// Preserve the current values of 𝑁bkt, {𝑘𝑖} and {𝐶𝑖
𝑗}

4 𝑁 ′
bkt ← 𝑁bkt; {𝑘′

𝑖} ← {𝑘𝑖}; {𝐶𝑖
𝑗
′} ← {𝐶𝑖

𝑗};
// Increment by 1 the number of clusters in the subspace

having the largest error
5 Calculate {𝐸𝑖}; 𝑡← argmax

𝑖
𝐸𝑖; 𝑘𝑡 ← 𝑘𝑡 + 1;

6 Update the centroids in the 𝑡-th subspace;
// The number of buckets is determined by the product

of the number of clusters
7 𝑁bkt ←∏𝑚

𝑖 𝑘𝑖;
8 until 𝑁bkt > 𝑁 ;
9 if 𝑁/𝑁 ′

bkt is closer to 1 than 𝑁/𝑁bkt then
// Revert to the previous values of 𝑁bkt, {𝑘𝑖} and {𝐶𝑖

𝑗}
10 𝑁bkt ← 𝑁 ′

bkt; {𝑘𝑖} ← {𝑘′
𝑖}; {𝐶𝑖

𝑗} ← {𝐶𝑖
𝑗
′};

11 end

tion error 𝐸𝑖 in the 𝑖-th subspace is defined as

𝐸𝑖 =

𝑁∑
𝑠=1

(
𝒙𝑖𝑠 − 𝐶𝑖

𝑞𝑖(𝒙𝒊𝒔)

)2

, (1)

where 𝑞𝑖(𝒙) is the assignment function given as

𝑞𝑖(𝒙) = arg min
𝑗

(
𝒙− 𝐶𝑖

𝑗

)2
. (2)

Because a large quantization error causes a large estima-
tion error in distance, we take up the strategy of minimizing
the largest quantization error 𝐸max in the subspaces. Algo-
rithm 1 outlines the proposed algorithm. It increases the
number of clusters in the subspace having the largest quan-
tization error, and ends when the total number of buckets
approaches the number of data. As a result, the feature
space is divided into 𝑁bkt buckets, which corresponds to the
hash size of the multi-dimensional hash table. We empir-
ically found the stopping condition from experiments over
different numbers of artificial data following the normal and
uniform distributions and real ones such as SIFT and GIST
features.

The algorithm also determines the dimensionality 𝑢 of
the multi-dimensional hash table. If the number 𝑘𝑖 of clus-
ters in a subspace is 1, the quantization error in the sub-
space is less than 𝐸max. In such a case, the subspace need
no dividing. Assuming the eigenvalues are arranged in de-
scending order, there exists 𝑚′ which satisfies 𝑘𝑖 > 1 for
𝑖 = 1, . . . ,𝑚′ and 𝑘𝑖 = 1 for 𝑖 = 𝑚′ + 1, . . . , ⌊𝐷/𝑝⌋.
Then, ignoring the latter half (𝑖 ≥ 𝑚′ + 1), 𝑢 is set to 𝑚′𝑝.

Algorithm 2: Incremental search region algorithm to
efficiently obtain the minimum size 𝑐 of NN candidates.

Input: {𝑑𝑖𝑗}, 𝑐
Output: a list of buckets containing NN candidates

1 𝑛← 0; 𝐿← 0; 𝑈 ←∑𝑚
𝑏=1 min𝑗 𝑑

𝑏
𝑗 +Δ;

// Pre-calculate the minimum and maximum partial bucket
distances in from the (𝑖+ 1)-th to the 𝑚-th subspaces

2 for 𝑖 = 1 to 𝑚− 1 do
3 𝑑𝑖min ←

∑𝑚
𝑏=𝑖+1 min𝑗 𝑑

𝑏
𝑗 ;

4 𝑑𝑖max ←
∑𝑚

𝑏=𝑖+1 max𝑗 𝑑
𝑏
𝑗 ;

5 end
6 while 𝑛 < 𝑐 do

// Find new NN candidates
7 𝑛← 𝑛+ CircuitBucketsFunction(1, 0);

// Extend the search region
8 𝐿← 𝑈 ; 𝑈 ← 𝑈 +Δ;
9 end

Algorithm 3: Function CircuitBucketsFunction(𝑖, 𝑑).
Input: 𝑖: index of subspace, 𝑑: partial bucket distance
Output: 𝑛: the number of NN candidates

1 if 𝑖 < 𝑚 then
// Find an index in the 𝑖-th subspace satisfying the

condition, and then continue the search in the
(𝑖+ 1)-th subspace

2 forall the 𝑗 do
3 if 𝐿 ≤ 𝑑+ 𝑑𝑖𝑗 + 𝑑𝑖max & 𝑑+ 𝑑𝑖𝑗 + 𝑑𝑖min < 𝑈 then
4 ℎ𝑖 ← 𝑗;
5 CircuitBucketsFunction(𝑖+ 1, 𝑑+ 𝑑𝑖𝑗);
6 end
7 end
8 else // Return the bucket indexed by the 𝑚 indexes
9 forall the 𝑗 do

10 if 𝐿 ≤ 𝑑+ 𝑑𝑚𝑗 & 𝑑+ 𝑑𝑚𝑗 < 𝑈 then
11 Return the bucket whose hash value is

𝑯 = {ℎ1, ℎ2, ⋅ ⋅ ⋅ , ℎ𝑚} and the number of
data in the bucket as 𝑛;

12 end
13 end
14 end

4.4. Efficient selection of NN candidates

Let 𝑐 be the number of NN candidates required. We pro-
pose an algorithm to select at least 𝑐 NN candidates with
the smallest estimated distances in a step-by-step manner.
Algorithms 2 and 3 show the detailed procedure, a part of
which is already presented in Sec. 4.1. Algorithm 2 finds
buckets whose distances are in the range between the lower
bound 𝐿 and upper bound 𝑈 of the estimated distance, call-
ing recursively Algorithm 3. The initial values of 𝐿 and 𝑈
are 0 and the squared distance between the query and the
nearest bucket, respectively. As long as the number 𝑛 of the
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NN candidates obtained so far is less than 𝑐, the process is
repeated with updated search regions. Δ is the increment
for 𝐿 and 𝑈 . We used 1/100 of the sum of the eigenvalues
as Δ.

5. Experiments

We performed experiments to compare the proposed
method (BDH) with representative ANNS methods, which
include IVFADC [12] and IMI [2] as hash-based methods
and randomized kd-tree (RKD) [24] and hierarchical k-
means (HKM) [21] as tree-based methods from the compo-
nents of FLANN [20]2. All the methods were implemented
in the C++ language. We implemented the hash-based
methods by ourselves, referring to the MATLAB version
of IVFADC3 and C++ source code of IMI4. IVFADC, IMI
and BDH share most of the source code. This avoids differ-
ences in implementation and makes for a fairer comparison.
For the tree-based methods, we used the C++ source code of
FLANN obtained at the authors’ homepage5. FLANN itself
did not work for large datasets. We experimentally explored
the best parameters for each method, and determined ones
which achieved the best performance in the criterion, recall
as a function of computation time. The parameters used in
the experiments are summarized in Table 1.

We used the BIGANN database6 containing 1 billion
128-dimensional SIFT descriptors [18] and the 80 Mil-
lion Tiny Images7 containing approximately 80 million 384-
dimensional GIST descriptors [23]. For the former, 1 mil-
lion, 10 million and 100 million datasets were used; 1000
data were used as queries. For the latter, 100 thousand, 1
million and 10 million datasets were used; the first data in
the first 1000 categories (1000 data in total) were removed
from the datasets and used as queries. For both databases,
the smallest dataset, which is a subset of larger datasets, is
used for training (parameter tuning).

We employed servers where 4 CPUs (AMD Opteron
6174, 2.2GHz, 12 cores) and 256GB memory were in-
stalled. All data were stored on memory. Each program
was executed as a single thread on a single core.

5.1. Experiment 1: Recall vs computation time

We compared the methods in the criterion, recall as a
function of computation time. Computation time is defined
as the average computation time required to obtain an an-
swer from the time the query is given. Accuracies for small

2 Although LSH [4], spectral hashing [29], transform coding [3] were
examined, their performance was too poor. Therefore, we have omitted
them.

3http://www.irisa.fr/texmex/people/jegou/ann.php
4http://arbabenko.github.com/MultiIndex/
5http://www.cs.ubc.ca/˜mariusm/index.php/FLANN/FLANN
6http://corpus-texmex.irisa.fr/
7http://horatio.cs.nyu.edu/mit/tiny/data/

computation times were relatively low because of limita-
tions in measuring computation times. Figure 5 shows ex-
perimental results on the SIFT and GIST datasets. They
show that the proposed method performed much better than
the others. Figure 5(c) shows that BDH was two times faster
than IMI and 4.5 times faster than IVFADC in 90% recall,
and 2.9 times faster than IMI and 9.4 times faster than IV-
FADC in 60% recall. Comparing Figs. 5(a) to 5(c), the ad-
vantage of the proposed method became clearer as dataset
size increased. This shows scalability of the proposed algo-
rithm. In contrast, comparing Figs. 5(d) to 5(f), the advan-
tage of the proposed method does not change. This might
be due to the high dimensionality of the feature vectors.

The fact that IVFADC and IMI did not scale is caused
by relatively large computational overhead. Letting 𝐺 be
the number of clusters in the original space, IVFADC needs
time 𝐺 for the distance calculation in selecting NN candi-
dates. IMI needs time 2

√
𝐺 for distance calculation, and

time
√
𝐺 log

√
𝐺 in sorting the distances in the subspaces.

5.2. Experiment 2: Recall vs number of candidates

We also compared the methods in the commonly used
criterion, recall as a function of the number of candidates.
With this criterion, we show the experimental results of
hash-based methods. We selected the best parameters sub-
ject to the criterion, recall as a function of computation time.
Figure 6 shows that BDH was also better than IMI and IV-
FADC in the standard criterion.

6. Conclusions

In the approximate nearest neighbor search (ANNS) pro-
cess, only the selection of nearest neighbor candidates has
any leeway for improvement. In this paper, we pointed
out the importance of evaluating the computational costs of
ANNS methods. Because taking the computation time into
account is inherent in the ANNS problem, researches ig-
noring computation time have only a limited impact. We
also pointed out that the state-of-the-art ANNS method,
IMI, does not capture the essence of NN candidate selec-
tion. That is, although the goal of NN candidate selection is
simply finding NN candidates, it employs unnecessary pro-
cesses such as comparative sort and heap.

Finally, we proposed a new ANNS method that takes into
account the cost of NN candidate selection. The proposed
method is based on the branch and bound algorithm which
produces a significantly more efficient search. We also pre-
sented an automatic parameter tuning algorithm which, ex-
cept for one parameter, can automatically determine the best
parameters. In an experiment using 100 million SIFT fea-
tures, the proposed method succeeded in reducing the com-
putation time by one third compared with the state-of-the-
art; the proposed method was two times faster in 90% recall,
and 2.9 times faster in 60% recall.
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Table 1: Parameters used in the experiments.

Methods Parameters SIFT 1M SIFT 10M SIFT 100M GIST 100K GIST 1M GIST 10M

BDH log2 ∣𝐶∣ , 𝑃 20, 5 26, 3 28, 5 18, 3 22, 5 24, 5
IMI log2 ∣𝐶∣ 14 18 20 16 18 22

IVFADC log2 ∣𝐶∣ 10 12 14 8 12 14
RKD No. of trees 8 8 8 16 8 16
HKM 𝑘 32 64 Not executable 16 64 32
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Figure 5: Experiment 1: Recall vs Computation time.
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