
Cognitive Active Vision for Human Identification

Yuzuko Utsumi, Eric Sommerlade, Nicola Bellotto and Ian Reid

Abstract— We describe an integrated, real-time multi-camera
surveillance system that is able to find and track individuals,
acquire and archive facial image sequences, and perform face
recognition. The system is based around an inference engine
that can extract high-level information from an observed scene,
and generate appropriate commands for a set of pan-tilt-
zoom (PTZ) cameras. The incorporation of a reliable facial
recognition into the high-level feedback is a main novelty of
our work, showing how high-level understanding of a scene
can be used to deploy PTZ sensing resources effectively. The
system comprises a distributed camera system using SQL
tables as virtual communication channels, Situation Graph
Trees for knowledge representation, inference and high-level
camera control, and a variety of visual processing algorithms
including an on-line acquisition of facial images, and on-line
recognition of faces by comparing image sets using subspace
distance. We provide an extensive evaluation of this method
using our system for both acquisition of training data, and
later recognition. A set of experiments in a surveillance scenario
show the effectiveness of our approach and its potential for real
applications of cognitive vision.

I. INTRODUCTION

Although low-level visual feedback for real-time tracking
of visual targets using pan-tilt-zoom (PTZ) cameras is a
much studied area, very little attention has been focused on
the problem of control using high-level feedback. By this
we mean control of the PTZ cameras in response not to
some low-level cue such as target position, but in response
to some higher level abstraction of the scene and its agents.
In this paper we describe such a system that incorporates an
inference engine to reason about the scene and agents in the
scene, and a set of control actions that are triggered during
the inference process in response to the current understanding
of the scene. In particular, the goal of the system we describe
is to acquire sequences of people using multiple cameras as
they traverse an area under surveillance, and to maximise the
views of the faces at suitable resolution for recognition, and
to perform recognition.

We base our system on an architecture described in [1] that
considered the issues of low-level data acquisition processes,
and how these processes communicate. In the current paper
we extend this architecture, showing how we can cou-
ple high-level inference to sensing strategies: prior domain
knowledge is captured via fuzzy, metric temporal logic rules,

Y. Utsumi is with Graduate School of Engineering, Osaka Prefecture
University, Japan yuzuko@cs.osakafu-u.ac.jp

E. Sommerlade and I. Reid are with Dept of Engineering Science,
University of Oxford, UK {eric, ian}@robots.ox.ac.uk

N. Bellotto is with Centre for Vision and Robotics Research, University
of Lincoln, UK nbellotto@lincoln.ac.uk

This work was supported by the EU FP6 grant number IST-027110 for the
HERMES project – http://www.hermes-project.eu, Grant-in-Aid for JSPS
Fellows No. 21·558, and Oxford Risk

and these are unified with instantaneous knowledge acquired
to generate scene situation descriptions using the inference
engine developed by [2], [3]. A significant contribution of
our work is to extend this paradigm by employing it in an
active system for PTZ camera control; camera commands
which suit a relevant situation are specified in the action part
of the description. Instead of using traditional camera-centric
commands such as “pan sensor A to direction X”, we seek
to issue high-level task commands for camera action, such as
“track current target with best camera”, when the situation
associated with it is instantiated. Therefore, the control deci-
sions are made based on the reasoning conclusions of agent
behaviours and situations. The high-level commands must
be then decomposed into a sequence of low-level demands
issued to the appropriate sensors at the correct times (e.g.
30Hz velocity-control demands for closed-loop tracking).

We root our exploration of this general approach in a
particular application, in which the goal of the system is
to acquire sequences of people using multiple cameras as
they traverse an area under surveillance, to maximise the
views of the facial views obtained at suitable resolution
for recognition, and to perform recognition. To this end we
have implemented a recent sequence-to-sequence matching
scheme [4]. We provide an evaluation of this algorithm for
the case of automatically acquired facial images and show
that it is remarkably effective for a database of individuals
which was acquired automatically using our “detect, track,
archive” in spite of variations in lighting, facial orientation,
etc., as well as being suitable for on-line recognition. A
working example of collaboration between static and active
cameras has been given recently by Krahnstoever et al.[5],
where active cameras are steered according to the inputs from
static ones. The data the active cameras provide is used for
identification purposes, but not for active, on-line control.
Soto et al.[6] address the task of tracking with multiple,
active cameras in a game-theoretic fashion. The collaboration
among the cameras is obtained from a distributed method that
seeks to reach consensus among neighbouring nodes. The
resulting control provides complete coverage of the acquired
targets, while providing higher resolution imagery from a
few targets. Contrary to our method, the whole target has
to remain in the field of view of the camera, which puts an
upper bound on the resolution attainable.

II. DISTRIBUTED CAMERA SYSTEM AND VISUAL
PROCESSING

In this section we recap the architecture described in [1],
a schematic of which is illustrated in Fig. 1. The system
comprises a set of distributed static and PTZ cameras and

2012 IEEE International Conference on Robotics and Automation
RiverCentre, Saint Paul, Minnesota, USA
May 14-18, 2012

978-1-4673-1404-6/12/$31.00 ©2012 IEEE 1238

Fig. 1. Conceptual operation of the system in which tables are shown as
one or two way communication paths between processes. All these tables
are held in a central SQL database.

visual tracking algorithms, together with a central supervisor
process.

In our implementation, there are two active cameras and a
wide-angle overhead static camera. Each camera and its ded-
icated processing unit constitutes an independent “tracker”
module. The Tracker Static Camera (TSC) and the Tracker
Active Cameras (TACs) are connected and synchronised
with a supervisor process via TCP/IP. In particular, the
communication between all these modules is done via an
SQL database: messages are “posted” into an SQL table,
and read (via polling) by the recipient. For example, visual
tracking data from the TSC are stored dynamically into a
table of the database, a data association process running
on a supervisor processor forms tracks and stores these
into another table, while the supervisor (acting on actions
triggered during inference) also stores demands for the PTZ
cameras into an SQL table read by the TACs.

The static camera of our system (TSC) is used for real-
time human detection on wide-angle image sequences. To
detect people, we use a variant of the “LOTS” background
subtraction method [7], [8].

A supervisor process (SVT) is responsible for the data
fusion, reasoning and camera control strategy. The Data
Integration module collects sensor observations from one or
more cameras and generates trajectories of the current tar-
gets. This is implemented using Kalman filters and nearest-
neighbour data association [9]. The High Level Reasoning,
described in the next section, generates the most appropriate
camera commands according to a semantic interpretation of
the current observations. The Command Dispatch module
is responsible for sorting, and delivering these commands,
which are sent to the destination cameras through the Com-
mand Table of the database (together with any requisite
arguments, like camera number or target ID).

A control command sent to a TAC client comprises a target
identification number together with a position and uncer-
tainty on the ground plane common to the system. Combined
with the expected height of targets, this is turned into a
bounding box in three dimensions. The active camera is then
steered using velocity control to centre the projection of this
area in the camera’s view. Once the camera is sufficiently
close, a standard face detection method [10] is run on the
observed area. If a face is detected, the client tracks the

target using a visual tracking method based on level sets [11].
The focal length for the tracking process is determined from
the geometry of the scene to ensure a suitable compromise
between facial resolution and to mitigate against target loss.
The client transmits the stabilised face images from the visual
tracking algorithm to the database, and stops tracking the
target upon receipt of a tracking command where the target
ID differs from the current one.

In the next two sections we detail the inner workings of the
processes that comprise the cognitive identification system.
The first is the control method using high level inference,
and the second an identification method that works with non-
cooperative targets.

III. ON-LINE INFERENCE AND CAMERA CONTROL

The High-Level Reasoning module contains a represen-
tation of the knowledge upon which on-line inference is
performed, thus to provide a conceptual interpretation of the
visual scene and generate opportune high-level commands
for the cameras, such as “track target” or “acquire face
image”. Our step towards this goal is the use of an inference
engine that combines situational a priori knowledge with
visual predicates formed from the real-time data stream in
SQL tables.

A. Situation Graph Trees

The a priori knowledge about the expected behaviour of
an agent can be seen as a sequence of situated actions. We
encode this using a co-called Situation Graph Tree (SGT)
which is specified in a formal language, SIT++, based on
a Fuzzy Metric-Temporal Horn Logic (FMTHL) [2], [3].
An SGT comprises a hierarchy of temporal fuzzy-rules to
describe a situation in terms that are as specific as possible
for any given time. Each node of a tree represents a possible
temporal decomposition of events and rules that is more
specific than the parent. Since there may be more than one
specialisation, the hierarchy of rules naturally forms a tree.

The traversal of the SGT yields an instance of an agent’s
behaviour in this conceptual representation and for a partic-
ular time interval. This is the output of an inference engine
for FHTML, called F-Limette [12], which is delivered in the
form of time-indexed predicates obtained from the SGT.

The inference engine tries to find the most specific instan-
tiation of behaviour given current knowledge, and traverses
the tree in a depth-first search. It proceeds by unifying the
fuzzy predicates generated by the low-level vision processes,
whereas the SGT encodes the “rules of engagement”.

B. High-Level Reasoning

The High-Level Reasoning module in Fig. 1 is responsi-
ble for knowledge representation, inference and (high-level)
camera control. It is an independent process of the SVT that
communicates with the other two modules, Data Integration
and Command Dispatch, via SQL tables. Fig. 1 shows in
the SVT and how the High-Level Reasoning module is in-
tegrated within the system. Virtual communication channels
(shown in grey) are established via the database tables as

1239

indicated. Quantitative data, generated by the cameras and
the Data Integration, is stored in the Observation Table and
then converted into a list of (qualitative) predicates with F-
Limette. An inference thread is invoked on the SGT when
new visual predicates are available.

The results of the inference is written to an Inference
Table. In case it contains high-level commands, these are
processed by the Command Dispatch module and delivered
to the TACs. The Inference Table is also used to control
additional modules external to the SVT, like the Face Recog-
nition discussed in Section IV. In this case, a “recognise
target” command from the High-Level Reasoning starts the
recognition process on images provided by the TAC(s) via
an Image Table. The result of the recognition, which can be
either a person’s name or “unknown”, is sent back to the
High-Level Reasoning through an Identity Table.

IV. FACE RECOGNITION

As soon as an active camera acquires face images of a
given target, it stores this data along with the current target’s
identification number (as specified by the system) into the
database. A face recognition process polls the database for a
commands to identify a target. This command specifies the
identification number for this target, which is subsequently
used to look for new face images in the database.

Despite recent advances in face recognition [13], most
identification methods require collaboration of the user, and
controlled lighting. Both these conditions are not given in
a surveillance setting. Our solution to this problem is based
on the face recognition algorithm proposed by Cevikalp and
Triggs[4], which attempts sequence-to-sequence classifica-
tion using a conceptually simple idea, but which in our
experience is very effective. Instead of identifying single
images, a set of images is used both in the training, as
well as the testing stage. Each input datum (i.e. image) of
a class (i.e. person) is represented by a point in a high
dimensional vector space. A set of input data (i.e. a sequence
of face images) is then approximated by the linear subspace
it spans (see figure 2). The distance of two sets of images
is then the distance between the closest points in each class’
subspace. This approximates the variation in the input data,
and yields robust classification performance. Mathematically,
this is expressed as follows. The affine hull is a linear
combination of each input vector xc,k (out of Kc) of a class
c, where all coefficient must sum to one:

H aff
c =

{∑
k

αkxc,k|
∑

k

αk = 1

}
. (1)

I.e. each xc has a unique combination of coefficients αk. The
constraint

∑
k αk = 1 can be rewritten in form of differences

of the input data, which span a basis of rank M ≤ Kc − 1.
This can be expressed in a matrix U ∈ RKc×M :

H aff
c = {µc + Ucv} . (2)

The distance of a point to a class is thus the minimum

Fig. 2. Different distances of a test sample (empty circle) to either the
affine hull (lines through points), the convex hull (thick lines), or the nearest
neighbour of each class. Note that affine hulls encompass all points of a
class. Here, we assume that there is noise on each training data point and
only the subspace dimensions with sufficient variance are kept.

distance to its subspace:

d∗(x,H aff
c) = arg min

v∈RM
‖x− µc −Ucv‖ (3)

This results in an over-determined linear equation system
which can be solved using Normal equations. Given two
image sets (from training and testing) and their affine hulls
H aff

1,2 , we look for the closest point on both subspaces:

d∗(H aff
1 ,H aff

2) = arg min
x1∈H aff

1 ,x2∈H aff
2

‖x1 − x2‖ (4)

When rewriting [U1 U2] = U and [vT
1 vT

2]T = v, this
yields the following linear equation system:

v = (UT U)−1UT (µ2 − µ1). (5)

V. APPLICATION TO COGNITIVE ACTIVE VISION

In this section we develop an SGT for the case of an agent
moving across a large atrium, in which the goal is to obtain
a close-up view of the face and to perform face recognition.
To this end, we have integrated the real-time face recognition
system in Section IV as a visual processing module.

As explained before, we couple high-level inference to
sensing strategies that control a set of active cameras for
human identification. This is done in practice using the
actions emitted during the traversal of an SGT, which has
been specifically designed for the particular scenario. The
following sections illustrate the conceptual model of the area
under surveillance and the design of an SGT for human
behaviour interpretation and intelligent camera control.

A. Conceptual Model of the Scene

Behaviour analysis requires an explicit reference to the
spatial context, i.e. a conceptual model of the scene. The
area under surveillance has been therefore divided into
semantically distinct regions, as shown in Fig. 3. Thanks
to this model it is possible to infer the relationship of an
agent with respect to (predefined) static objects in the scene,
and to associate facts to specific locations within it.

Each polygonal segment in Fig. 3 describes a possible
position in which an agent can be found within the scene,
and is annotated by a label which determines this area’s
conceptual description and type. In this work, we distinguish
two different type of segments:

1240

roi3

atrium
aisle

bridge roi1 roi2

stairs

stairs

ground floor

second floor

hermes1

hermes2

Fig. 3. Atrium and floor-plan showing semantically distinct regions used
for inference. hermes1 and hermes2 are the two active cameras (TACs).

• an exit type, which includes the bridge, stairs and aisle.
These areas lead to other, non-supervised regions.

• an atrium type, which includes the segments labelled
roi-i. These form the main activity area of the atrium.

. In the next section we describe how to form predicates that
relate the spatial position of an agent to the segments above.

B. SGT for Human Identification and Camera Control

Fig. 4 depicts the SGT used in the first scenario to describe
simple behaviour of agents and trigger camera actions for
identification and tracking of targets. The root node in the
first layer (with the least specialisation), uses the predicate
active to describe whether a target is present in the system.
In the language used for logic programming, this binds the
variable Agent (variables always start with capital letters)
to a particular target ID from the Observation Table.

The initial scheme is specialised by another situation graph
in Layer 2, comprising two schemes both of which can be
either the start or the end of the current situation. They
indicate that the agent may be either on the first floor of the
atrium (predicate on(Agent, first floor)) or some-
where else, and may move between the two locations (as
illustrated by the thin double arrows). However, it may not
be simultaneously on the first floor and on another location.
Note that the second scheme (predicate not on(Agent,
first floor)) is instantiated when the agent is detected
by the TSC outside the first floor. Indeed, we assume the
latter is the ground plane and ignore any activity outside it.

The first scheme is particularised further to describe the
behaviours of the agent on the first floor with two situation
graphs in Layer 3, depending on where the agent is detected:
• on atrium(Agent) is satisfied as the position of

the agent, projected on the ground plane, is inside the
atrium’s area. The following specialisation in Layer 4
is used to determine the direction of the target and
select the most appropriate camera for identification, as
discussed below.

• on exit(Agent, Exit) describes the situation
when the agent is located in one of the exit segments

6

5

4

3

2

1
Layer

close_to(Agent, Camera)

sts(is_close_to(Agent, Camera))

far_from(Agent, Camera)
sts(is_far_from(Agent, Camera))

cmd(track(Camera, Agent))
cmd(follow(Camera, Agent))

cmd(follow(Camera,Agent))

identified_as(Agent, Identity)

sts(is_unidentified(Agent))

not_identified(Agent)

sts(has_identity(Agent, Identity))

on(Agent, first_floor)

sts(is_inside(Agent, first_floor))

sts(entering_from(Agent, Exit))

via(Agent, Exit)

sts(leaving_via(Agent, Exit))

on_atrium(Agent) on_exit(Agent, Exit)

sts(crossing(Agent, atrium))

towards(Agent, Exit)
side_of(Exit, Camera)

sts(going_towards(Agent, Exit))

not_on(Agent, first_floor)

sts(is_outside(Agent, first_floor))

sts(is_present(Agent))

active(Agent)

sts(crossing(Agent, Exit))

cmd(recognize(face_rec, Agent))

from(Agent, Exit)

Fig. 4. SGT for active camera selection and face recognition.

(bridge, ground floor stairs, aisle or second floor stairs).
It is followed by two specialised situation graphs in
Layer 4, each containing a single scheme:

– from(Agent, Exit), in the first situation, rep-
resents the agent entering the atrium from an exit
segment;

– via(Agent, Exit), in the second situation,
describes instead the case of an agent leaving the
atrium through an exit.

As noted before, whenever a node in the SGT is satisfied
during the traversal, it can optionally emit an action. In
previous work [3], [14], the typical application of this ability
was the use of the note(...) action, which prints a
particular state to monitor or log the inference process,
or for Natural Language Text generation. Within our SGT,
the note(...) action is extended to form a new one,
called sts(...), that records the current status of the
traversal in the Inference Table of the SQL database. For
example, in case of agent 12 leaving the atrium through
the bridge, the SGT-traversal would result in an action
sts(leaving via(agent 12, bridge)) written on
the Inference Table.

Remember that the first situation in Layer 3 refers to
the case when the agent is walking in the atrium. The
specialisation that follows in Layer 4 seeks to determine
its direction (predicate towards(Agent, Exit)) and
the camera it is pointing to (predicate side of(Exit,

1241

Camera)). Here the system tries to unify the variables
Camera and Exit for a consistent interpretation with the
current binding of Agent, resulting in selection of the
appropriate camera in the node’s actions of the subsequent
layers. The specialisation of the second situation on Layer 3,
instead, is concerned with the case that the person is either
just leaving or entering the first floor of the atrium, in which
case no TAC is dispatched.

Much more interesting are the cases illustrated in Layer 5
and 6, where the result of an action has direct consequences
on the next traversal; the aim of this action will be to acquire
new information to enable a deeper instantiation in the SGT.
This part of the SGT performs both camera selection and
“follow” behaviour; additionally, it can instruct a camera to
“track” a target’s face and “recognise” it.

Besides writing the current status, the SGT-traversal
can now generate a special cmd(...) action that writes
a command string in the Inference Table. In this case,
cmd(follow(Camera, Agent)) tells one of the TACs
(hermes1 or hermes2 in Fig. 3) to follow the agent. This
string is interpreted by the Command Dispatch module of
the SVT and sent to the relevant camera via the Command
Table. While the execution of actual follow command
uses position-based open-loop control of the active camera
based on continuous demands from the TSC, the track
command results in closed-loop visual tracking independent
of the TSC. In particular, it tells the TAC to locate and
zoom on the target’s face, sending a continuous stream of
high-resolution images to the Image Table. A recognise
command would then activate the Face Recognition module,
reading images from the Image Table and sending the result
to the High-Level Reasoning through the Identity Table.
Once identification is complete, the camera is instructed, via
the SGT, to zoom-out and follow the target in open-loop
mode.

More specifically, refer to the left-hand branch of the
SGT tree in which a new agent has entered the scene.
Upon reaching Layer 4 with the instantiation of the Agent
and Camera variables, a new specialisation in Layer 5
considers whether the target has been identified or not, with
the instantiation of the following predicates:

• not identified(Agent), means the agents has
not been identified yet, so the traversal proceeds further
to Layer 6. Here the situation is represented by the
following two schemes:

– close to(Agent, Camera), in which the tar-
get is on a region of the atrium too close to the
current camera. In this case, the camera control
cannot react quickly enough to zoom on the moving
target and acquire high-resolution images of the
face. A simple follow command is therefore
dispatched.

– far from(Agent, Camera), where the
target is at optimal distance for closed-loop face
tracking and recognition. This is accomplished
by the current camera and the face recognition

via the respective track and recognise
commands. In particular, cmd(track(Camera,
Agent)) generates the first command for
the selected camera, which zooms on the
face and tracks it in closed-loop control;
cmd(recognise(face rec, Agent),
instead, invokes the Face Recognition module to
identify the target as already explained.

• identified as(Agent, Identity), means the
identity of the target is known, therefore a simple
follow command is generated, which results in a
zoom-out and open-loop control of the TAC.

VI. EXPERIMENTS

We have conducted numerous experiments with the overall
system in [1], showing that our SQL-based architecture is
suitable for inter-communication, control and data storage
of a distributed multi-camera system. Here we evaluate the
performance of the classification method on real-world data,
acquired by application of the SGT in section V with-
out writing identification results into the database (i.e. the
predicate not identified(Agent) is never satisfied).
The acquired data is used to learn classifiers for a set of
individuals. A successful recognition process then yields a
database entry and thus closes the perception-action cycle
defined by previous SGT.

A. Evaluation of Face Classifiers

To train the affine hull classifiers, we use facial sequences
which have been acquired intermittently by the surveillance
system over a period of 20 days. This part of the database
comprises about 200 sequences involving about 150 indi-
viduals, with sequence length varying between 50 and 600
frames (2–20 seconds).

The imagery from the database poses the typical obstacles
that need to be overcome by surveillance system. Despite
of an enclosed environment, the lighting conditions of the
sequences vary considerably with the weather and time
of day, as the ceiling of the atrium is semitransparent.
Furthermore, the posture of the face varies from fully frontal
to profile views. Some images are also severely affected
by motion blur. Obviously, the acquisition process is also
not devoid of error – whenever an initial detection yields a
false positive (e.g. a person’s reflexion in an office window),
the level set tracker will yield a set of non-face images
(yet accurately tracked). These misacquisitions and outliers
comprise 11 percent of the data set.

Lastly, as the images are the output of a robust level-
set tracker, they contain significant parts of background. For
the purpose of recognition, the faces are thus centred by
cropping to the output of the Viola-Jones face detector[10],
converted to grey-scale, resampled to a resolution of 20×20,
and histogram equalised.

Seven individuals in the database consented to the use
of their images for evaluation of the recognition classifiers,
constituting 17308 images. we are able to identify only
the seven individuals correctly in the database. Because of

1242

Face images

Blurred images

False positive
(background)
False positive
(wrong region)

Fig. 5. Typical examples of the input data.

exact evaluations, we use the seven individuals. For training
and evaluation purposes, we use 6421 images of other
individuals, comprising an “unknown” class. Fig 5 shows
some examples of the database images.

1) Selection of Training Data: The quantity and quality of
training data affects the recognition results. Here we focus on
the aspect of the training data that has the highest relevance
to the system: the variation in the data.

Ideally, we would like to use a single sequence (i.e.
continuous recording) of an individual as training data for
a classifier, and the shortest sequence possible. The first
makes acquisition of new individuals much faster, but does
not capture the variation due to the environment. The same
holds for the second: the more variation by the individual
is required, the longer the system has to track a target for
initial acquisition.

To begin we consider taking training data from a single
sequence of an individual, and vary the number of images
taken between 15 and 240 in increments of 15. Each batch
of 15 images forms a subsequence (i.e. approx 0.5 seconds).
We compare this with choosing the same number of images,
but each subsequence selected randomly from all sequences
of each individual in the database.

The affine hull classifier is evaluated using the rest of the
database, and each test comprises recognition evaluation of
a subsequence.

For off-line evaluation, we repeat the training and testing
procedure 10 times, and report average recognition results
using recall-precision curves shown in Fig. 6. Asterisks
shows the recognition results when 15 images were used for
learning, and circles shows the results when 30–240 images
were used for learning.

Unsurprisingly, the recognition results improve when the
number of training images is increased. Also unsurprisingly,
when the training data are selected randomly from different
sequences (of the same individual of course), rather than
drawn from a single sequence, the recognition results are
better. This is to be expected because the randomly drawn
samples span a wider variation in possible input conditions.

2) Selection of norm: We employ principal component
analysis to obtain the basis U that spans the subspace of
the classifier (see equation 2). We evaluate the influence
of the outliers on the recognition result by comparing the
performance of the standard, linear PCA approach based on
singular value decomposition with the L1-norm PCA [15].
Training images were chosen as before, but both training as
well as testing data was polluted by outliers. We learned and
evaluated the classifier 10 times and report the average in
figure 6.

one sequence, L1
several sequences, L1
one sequence, L2
several sequences, L2
one sequence, L2, without outliers

re
ca

ll

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 − precision
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

several sequences, L2 without outliers

Fig. 6. ROC curve of classification results.

The recognition results of the L1-norm method show fairly
similar results to the conventional PCA, which renders this
approach ineffective for the type of outliers in our database.
As the (computational) performance of the standard PCA is
much higher than the L1-norm PCA, we choose the former
(L2-norm) for face recognition.

B. Target Identification

The next example illustrates the effect of camera com-
mands to identify unknown pedestrians walking in the
atrium. It shows how inference is used to control the pan-
tilt-zoom of active cameras and collect close-up images for
further face recognition. The SGT used is the one illustrated
in Fig. 4.

Running the system over an extended period yields facial
snapshots of every individual to have traversed the area under
surveillance. For the purposes of our subsequent experiments
we used our “detect, track, archive” SGT-controller to au-
tomatically acquire 200 sequences (23729 frames) of 150
individuals over several days of operation. Snapshots are
trivially recovered from the database, even when weeks old.
During this acquisition process the face recognition process
was not enabled, so the system has no identifications.

Face recognition is then enabled for seven of the indi-
viduals in the database. High level inference in the SGT
controls the active cameras to acquire good facial images
for identification, and “releases” them once recognition is
successful.

Output from an example is given in Fig. 7 which shows
the images acquired using the TAC, along with relative SGT-
traversals and the result of the inference. The sequence in
the figure illustrates an agent walking from the aisle to the
bridge. The agent is initially detected by the static camera
(TSC) on the top of the atrium and processed by the High-
Level Reasoning module of the SVT. In particular, the first
row of the sequence shows agent 0 entering the atrium
from the aisle. Its behaviour is described by the status
messages generated by the current SGT-traversal, which are
shown on the right-hand side of the figure, and written on
the Inference Table.

The High-Level Reasoning then sends a track command

1243

is_present(agent_0)

crossing(agent_0,aisle)

STATUS:

is_inside(agent_0,first_floor)

entering_from(agent_0,aisle)

is_present(agent_0)

crossing(agent_0,atrium)

STATUS:

COMMAND:
track(hermes1,agent_0)
recognize(face_rec,agent_0)

is_inside(agent_0,first_floor)

is_unidentified(agent_0)
going_towards(agent_0,bridge)

is_far_from(agent_0,hermes1)

is_present(agent_0)

crossing(agent_0,atrium)

STATUS:

COMMAND:
track(hermes1,agent_0)
recognize(face_rec,agent_0)

is_inside(agent_0,first_floor)

is_unidentified(agent_0)
going_towards(agent_0,bridge)

is_far_from(agent_0,hermes1)

is_present(agent_0)

crossing(agent_0,atrium)

STATUS:

is_inside(agent_0,first_floor)

has_identity(agent_0,eric)
going_towards(agent_0,bridge)

COMMAND:
follow(hermes1,agent_0)

is_present(agent_0)

crossing(agent_0,bridge)

STATUS:

is_inside(agent_0,first_floor)

leaving_via(agent_0,bridge)

Fig. 7. Target tracking and identification.

Fig. 8. Target tracking and identification through occlusion works, but
yields mediocre results due to brittle PCA.

to a specific TAC, based on the inference over the low-
level information obtained from the TSC. Once the agent is
successfully tracked, face images (shown on top-right corner
of the second and third snapshot) are sent to the database.
A recognise command activates the face recogniser,
which retrieves these images from the database and tries to
determine the agent’s identity. In this case, hermes1 tracks
agent 0 on the second and the third row of the sequence,
until the agent is identified as eric in the fourth row. The
successful recognition causes a follow command to be sent
to hermes1, which zooms-out the camera and simply keeps
agent 0 within its field of view. The TAC still follows the
agent when this leaves the atrium through the bridge.

In this experiment, it is important to note the path of the
SGT-traversal in the middle column of the figure. While the
change of the traversal between the first and the second row,
or between the forth and the fifth row, depends only on the
particular behaviour of the agent (entering or leaving the
atrium), the difference between the third and the forth row is
a direct consequence of the high-level commands generated
by the system. In particular, the execution of track and
recognise permits the status change of agent 0 from
is unidentified to has identity, and the conse-
quent traversal of a different branch of the SGT.

Figure 8 highlights an advantage of our approach. Within
a populated environment, the target that can be most reliably
identified is selected for identification. Two occluding targets
are not chosen for identification as they are not moving
towards an exit in the direction of the camera. The supervisor
tracker provides the target position which – at the time
the command is issued – is occluded by other targets. The
camera zooms for an acquisition of the target, which happens
right after the command has been issued. Initial face images
are acquired once the occluding persons separate, and by
virtue of the robustness of the level set tracker employed,
tracking continues through occlusion. Once the target reap-
pears, another face image is acquired and the recognition
process started. However, due to the large proportion of
outliers in this sequence, the identification was incorrect.

VII. CONCLUSIONS

We have described a system architecture which facili-
tates linking of high-level inference to sensing actions. In
particular we have illustrated this system in the context of
surveillance, showing how high level inference can link low-
level processes such as target detection and visual tracking
with a process for recognition of uncooperative subjects.

In future work, we plan to exploit the capabilities of the
fuzzy logic the reasoning engine rests upon. For this we
map probabilities (e.g. as returned from the visual tracking
algorithm) to fuzzy degrees of belief. Unfortunately, these
are simply thresholded by the current inference mechanism
to traverse the SGT in a depth-first fashion. We are thus
investigating a breadth-first traversal to enable selection from
multiple, competing hypotheses on the same specialisation
layer.

1244

Regarding the face recognition results, we have shown a
real-time, real-world application of the affine hull method
proposed by Cevikalp and Triggs [4]. We have furthermore
investigated the lack of improvement due to the robust
PCA. A relatively recent development provides a principled
approach to handling gross outliers in the data [16], and
promising initial performance on our data. We are further-
more interested in providing simpler means to acquisition
of previously unseen targets, which leads our future work
towards incremental clustering methods.

REFERENCES

[1] N. Bellotto, E. Sommerlade, B. Benfold, C. Bibby, I. Reid, D. Roth,
L. V. Gool, C. Fernández, and J. Gonzàlez, “A distributed camera
system for multi-resolution surveillance,” in Third ACM/IEEE Inter-
national Conference on Distributed Smart Cameras (ICDSC 2009),
2009.

[2] K. H. Schäfer, “Unscharfe zeitlogische Modellierung von Situationen
und Handlungen in der Bildfolgenauswertung und Robotik,” Ph.D.
dissertation, Fakultät für Informatik der Universität Karlsruhe, 1996,
(in German).

[3] H.-H. Nagel, “Image sequence evaluation: 30 years and still going
strong,” in Proc. of the 15th Int.l Conf. on Pattern Recognition (ICPR),
vol. 1, 2000, pp. 1–6.

[4] H. Cevikalp and B. Triggs, “Face recognition based on image sets,”
in Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, 2010.

[5] N. Krahnstoever, T. Yu, S.-N. Lima, and K. Patwardhana, “Col-
laborative control of active cameras in large-scale surveillance,” in
Multi-Camera Networks: Principles and Applications, H. Aghajan and
A. Cavallaro, Eds. Elsevier Science Inc., 2009, pp. 165–188.

[6] C. Soto, B. Song, and A. K. R. Chowdhury, “Distributed multi-
target tracking in a self-configuring camera network.” in Proc. IEEE
Computer Vision and Pattern Recognition (CVPR). IEEE, 2009, pp.
1486–1493.

[7] T. E. Boult, R. J. Micheals, X. Gao, and M. Eckmann, “Into the
woods: Visual surveillance of noncooperative and camouflaged targets
in complex outdoor settings.” in Proc. of the IEEE, 89(10), October
2001, pp. 1382–1402.

[8] D. Hall, J. Nascimento, P. Ribeiro, E. Andrade, P. Moreno, S. Pesnel,
T. List, R. Emonet, R. B. Fisher, S. J. Victor, and J. L. Crowley,
“Comparison of target detection algorithms using adaptive background
models,” in International workshop on Performance evaluation of
Tracking and Surveillance, 2005.

[9] N. Bellotto and H. Hu, “Computationally efficient solutions for track-
ing people with a mobile robot: an experimental evaluation of Bayesian
filters,” Autonomous Robots, vol. 28, pp. 425–438, 2010.

[10] P. Viola and M. J. Jones, “Robust real-time face detection,” Int. Journal
of Computer Vision, vol. 57, no. 2, pp. 137–154, 2004.

[11] C. Bibby and I. Reid, “Robust real-time visual tracking using pixel-
wise posteriors,” in Proceedings of the 2008 European Conference on
Computer Vision, 2008.

[12] K. H. Schäfer, Limette User Manual, Universität Karlsruhe, 1997.
[13] P. Phillips, W. Scruggs, A. O’Toole, P. Flynn, K. Bowyer, C. Schott,

and M. Sharpe, “FRVT 2006 and ICE 2006 large-scale experimental
results,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 32, no. 5, pp. 831 –846, May 2010.

[14] M. Haag and H.-H. Nagel, “Incremental recognition of traffic situ-
ations from video image sequences,” Image and Vision Computing,
vol. 18, no. 2, pp. 137–153, 2000.

[15] N. Kwak, “Principal component analysis based on l1-norm maximiza-
tion,” IEEE Transaction on Pattern Analysis and Machine Intelligence,
vol. 30, no. 9, pp. 1672–1680, 2008.

[16] E. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?” Department of Statistics, Stanford University, Tech. Rep.
2009-13, 2009.

1245

