
Augmented Handwritings by Data-Embedding Pen

Akira YOSHIDA†, Marcus LIWICKI††, Seiichi UCHIDA†††, Masakazu IWAMURA††††,

Shinichiro OMACHI†††††, and Koichi KISE††††

† Graduate School of Systems Life Sciences, Kyushu University
††† Faculty of Information Science and Electrical Engineering, Kyushu University

Motooka 744, Nishi-ku, Fukuoka-shi, 819-0395 Japan
†† Knowledge Management, DFKI Trippstadter Str. 122, D-67669 Kaiserslautern, Germany

†††† Graduate School of Engineering, Osaka Prefecture University Sakaishi,Osaka, 599-8531 Japan
††††† Graduate School of Engineering, Tohoku University Sendai-shi, 980-8579 Japan

E-mail: †yoshida@human.ait.kyushu-u.ac.jp

Abstract In this paper, we propose a data-embedding pen, which adds an ink-dot sequence along a handwritten
pattern during writing. The ink-dot sequence represents some meta-information, such as writer’s name, date
of writing, and URL. The meta-information can be extracted from the handwritten pattern by image process-
ing techniques and a stroke recovery technique. Consequently, we can augment the handwritten pattern by the
data-embedding pen to carry arbitrary information.

Key words data embedding, handwritings

1. Introduction

Handwriting is one of the most important methods for writ-

ing down information, making annotations, or just marking.

Unfortunately, many information known during writing is al-

ready lost as soon as the ink is on the paper. In other words,

we cannot access meta-information about the handwritten

pattern from itself. For example, it is impossible to retrieve

who wrote this pattern or when it was written. Consequently,

a handwritten pattern on physical paper is just an ink pattern

and it cannot represent any information but its shape.

We aim to realize a novel pen device which adds an informa-

tion to handwriting on physical paper. The pen device, called

data− embeddingpen [1], can embed meta-information by an

additional ink-dot sequence along the ink stroke of the hand-

writing. Each ink-dot represents an information bit and thus

an ink-dot sequence represents a bit-stream of the embedded

information.

2. The Data-Embedding Pen

The data-embedding pen is a device which comprises a

usual ballpoint pen and an ink-jet nozzle element. Figure 1

shows this device. The nozzle produces small ink-dots along

handwritten stroke during writing. The number of ink-dots,

size/length of ink-dots, and their timing represents the em-

bedded information. In this paper, we used yellow ink for

Figure 1 The data-embedding pen

those dots, while it is also possible to use some invisible ink.

3. Information Embedding

As stated above, the embedded information is represented

by an ink-dot sequence. The nozzle used in this paper is able

to generate up to 2,000 ink-dots per second. Using this high

frequency, we can form a connected line by a continuation of

several ink-dots. Hereafter, a line by n continuous ink-dots is

called n−pulseline. Figure 2 shows an example of handwritten

pattern with ink-dots.

Our cording scheme is based on the combination of three

different n-pulse lines. Specifically, we use n =1 (a dot), 5 (a

short line), and 20 (a long line). The ink-dots sequence of

Fig.2 consists of those n-pulse lines. The information is con-

- 213 -

Figure 2 Example of handwriting pattern

verted into binary(0 and 1) sequence and embedded by using

the 1-pulse line as 0 and the 5-pulse line as 1. A short pause

is inserted between each bit information (1-pulse or 5-pulse

line) like in the Morse code. The 20-pules line, hereafter called

synchronization blob, is used as an marker to take synchroniza-

tion of information recovery.

Our coding scheme is composed of three units, called f rame,

block, and bit. The bit is the smallest unit of information and

defined by a 1-pulse line or 5-pulse line as noted before. Sev-

eral consecutive bits comprise a block and several consecu-

tive blocks comprise a frame. A pause which is longer than

the pause between bits is inserted between two consecutive

blocks. Each flame begins with a synchronization blob.

4. Information Recovery

4. 1 Image Processing
In order to retrieve the embedded information, we extract

ink-dots and black ink strokes from a scanned image. In the

this section, four steps of image processing are explained.

The first step of ink-dot extraction is a simple thresholding

operation to extract the black ink stroke and yellow ink-dots.

The second step is noise removal because the black ink stroke

image extracted includes many noisy pixels. Thus, we apply

erosion and dilation to the black ink stroke image. Similar

operations are also applied to the ink-dot image. The third

step is a special treatment of ink-dots occluded by the black

ink stroke. The fourth step is a thinning operation on the black

ink stroke. Figure 3 shows the result of image processing.

4. 2 Aligning Ink-Dots by Stroke Recovery
In order to decode the ink-dots, they should be aligned ac-

cording to their original temporal order. Since this order is lost

in the scanned image, we must estimate it by using the result

of stroke recovery. Specifically speaking, after recovering the

writing order of the black ink stroke based on the algorithm

presented in [2] and establishing the correspondence between

the ink-dots and the stroke, we align the ink-dots.

4. 3 Data Decoding
For decoding, the bit information (i.e., 1-pulse and 5-pulse

(a)

(b)

Figure 3 (a)Ink-dots (yellow) nearby a handwriting stroke (black)．
(b)After image processing．

lines and synchronization blob) is first recovered at every ink-

dot, just by checking its size/length. The sequence is sep-

arated into frames using the synchronization blobs. Larger

gaps which detected within each frame are assumed as the

gaps between block.

Next, a plausibility control is performed on the extracted

data. For each block, the number of bits is confirmed. Some-

times a block has spurious bits, resulting from a wrong map-

ping or just from noise. In this case, those adjacent bits

whose distance deviates too much from the mean distance

are deleted. If the number of bits (blocks) does not corre-

spond to the values the number of bits per block (blocks per

frame), the frame is rejected.

5. Error Correction

The process of embedding the ink next to the handwritten

stroke is often accompanied with several errors. Especially,

it is a big issue that an ink-dot sometimes overlaps with the

next ink-dot because of slow pen-movement. Moreover, the

black ink sometimes overlaps with the ink-dots.

In order to recover from the errors, in this paper we use

Reed-Solomon error correction [3] for reliably recovering from

the errors. For the Reed-Solomon error correction, it is not

needed to recover all frames correctly as long enough frames

are present. Because, it contains data of frame position, and

it can recover the entire information from only several frame.

In this paper, we design each frame to be comprised of two

blocks, the first block for the position of the frame and the sec-

ond block for its value. Each block contains 4 bit. Naturally,

each frame consists of 8 bit; 4 bit for the frame position and 4

bit for its value. Hereafter, k represents the number of frames.

More details of Reed-Solomon codes can be found in [3].

6. Experiments and Results

6. 1 Data
We collected data-embedded handwritings using the cur-

rent pen prototype. The dataset contains 50 horizontal straight

lines with a length of 5 cm or 10 cm. All lines have been drawn

with approximately the same velocity.

For the Reed-Solomon encoding, we used the Shifra Open

Source error correcting code library. The code length was

fixed to 15 frames.

- 214 -

Figure 4 Extraction result (after thinning) of a 5 cm long line (enlarged).

Table 1 Percentage (%) of correctly recovered information

frames (k) # bits 5 cm 10 cm

1 4 100 100

4 16 100 100

5 20 64 100

6 24 36 100

7 28 16 100

8 32 4 100

9 36 0 100

10 40 0 86

11 44 0 50

12 48 0 26

13 52 0 6

14 56 0 0

6. 2 Result
We focus on how much information can be embedded in

straight lines. In this task only rarely some decoding errors

occurred on the frame level, since there are no crossing. (Fig-

ure 4 provides an example for the extraction result of a 5 cm

straight line where no error occurred.) The only problem

was some overlapping ink-dots due to a slow pen-movement.

Note that these frames were rejected during the frame de-

coding step presented in Section 4. 3, because it resulted in

missing points for the Reed-Solomon error correction.

Table 1 shows the results of the experiments. This table

shows the percentage of samples where the entire informa-

tion could be correctly recovered by using the Reed-Solomon

error correction. For k <= 4, the entire information was always

correctly recovered even for straight lines as short as 5 cm.

For larger k value, the performance decreases, because only a

limited number of frames appear in a 5 cm line. (In fig. 4, for

example, 6 frames appear.)

Some errors were corrected by the Reed-Solomon code. In

Fig. 4, some ink-dots are overlapping. (For example, the third

block from the right is overlapping.) In this case, 5 blocks

were correctly recovered. If k <= 5, the entire information can

be correctly recovered by using the Reed-Solomon error cor-

rection.

7. Conclusions

In this paper, we have presented results of the experiment

on a data-embedding pen, which can add meta-information

to handwritten patterns. The meta-information represent the

date of writing, the writer ID, and URL. The main idea is to

encode the desired information in an ink-dot sequence plotted

nearby handwriting strokes.

We proposed the use of the Reed-Solomon error correc-

tion scheme for reliable encoding and recovering the meta-

information. We can have correct recovery results by the error

correction results, even if we have several erroneous ink-dots

due to noises on image processing.

In our experiments, we have shown how much information

can be embedded in straight line with the Reed-Solomon error

correction. From straight lines of just 5 cm, 16 bits of informa-

tion could be successfully encoded and recovered. Note that

16 bit is enough to distinguish 216 people. This implies that

if a company uses this short line for showing that a certain

employee has checked a document, it is possible to identify

which employee has checked the document.

References
[1] M. Liwicki, S. Uchida, M. Iwamura, S. Omachi, and K. Kise,

“Data-Embedding Pen - Augmenting Ink Strokes with Meta-
Information,” Proc. DAS, pp.43–51, 2010.

[2] Y. Kato and M. Yasuhara, “Recovery of Drawing Order from
Single-Stroke Handwriting Images,” IEEE Trans. Pat. Anal.
Mach. Intell., 22(9):938-949, 2000.

[3] I. S. Reed and G. Solomon. “Polynomial codes over certain fi-
nite fields,” Journal of the Society for Industrial and Applied
Mathematics, 8(2):300-304, 1960.

- 215 -

