
Compressed Representation of Feature Vectors Using a Bloomier Filter
and Its Application to Specific Object Recognition

Katsufumi Inoue and Koichi Kise
Graduate School of Engineering, Osaka Prefecture University

1-1 Gakuencho, Naka, Sakai, Osaka, 599-8531 Japan
inoue@m.cs.osakafu-u.ac.jp, kise@cs.osakafu-u.ac.jp

Abstract

Nearest neighbor search of feature vectors representing
local features is often employed for specific object recogni-
tion. In such a method, it is required to store many feature
vectors to match them by distance calculation. The number
of feature vectors is, in general, so large that a huge amount
of memory is needed for their storage. A way to solve this
problem is to skip the distance calculation because no fea-
ture vectors need to be stored if there is no need to calcu-
late the distance. In this paper, we propose a method of
object recognition without distance calculation. The char-
acteristic point of the proposed method is to use a Bloomier
filter, which is far memory efficient than hash tables, for
storage and matching of feature vectors. From experiments
of planar and 3D specific object recognition, the proposed
method is evaluated in comparison to a method with a hash
table.

1. Introduction

Object recognition has been spotlighted as a key technol-

ogy to deal with a large volume of image data effectively

and efficiently. Tasks of object recognition can be classified

into two categories: generic [20] and specific [17, 18, 15].

Generic object recognition is to recognize classes of objects

such as “a chair” and “ a car”. Specific object recognition,

on the other hand, is for identifying object instances such as

a specific type of chair and car, in other words “the chair”

and “the car”. This paper focuses on the latter, especially

methods which employ local features such as SIFT (Scale-

Invaliant Feature Transform) [13].

A technology of specific object recognition which allows

us to recognize a large number of objects is required to

provide a practical service because there are a lot of ob-

jects around us. Local features are multidimensional and

real-valued vectors and hundreds to thousands of them are

generally extracted from a single image. Since they have

high discrimination power, we utilize them for object recog-

nition. As a specific object recognition method, a funda-

mental method is based on voting by matching feature vec-

tors [17, 12]. This method employs nearest neighbor search

of feature vectors for matching. Although even such a sim-

ple method offers high recognition rates, it poses the fol-

lowing problems caused by a large number of feature vec-

tors. First, matching of feature vectors (finding their nearest

neighbors) requires a long processing time. Second, many

feature vectors need an immense amount of storage.

For the first problem, it is necessary to speed up the pro-

cess of nearest neighbor search for matching. Fortunately,

many methods have already been proposed. Approximate

nearest neighbor search [1, 2] utilized in these methods en-

ables us to improve the efficiency dramatically while keep-

ing the accuracy of recognition [9].

For the second problem, on the other hand, it is not easy

to achieve the breakthrough. Some methods to reduce the

amount of memory have already been proposed. For exam-

ple, one of them utilizes the “bag of features” model, which

is based on vector quantized feature vectors called “visual
words” [14, 16, 19] for reduction of the memory. Another

method is to reduce it by scalar quantization which limits

the number of bits for each dimension [10]. However, these

methods need the amount of memory proportional to the

number of feature vectors because of the distance calcula-

tion. Therefore there is a limit of memory reduction with

these methods.

A possible approach to solve this problem is to skip the

distance calculation. If the distance calculation is not nec-

essary for recognition, there is no need to store feature vec-

tors. From this viewpoint, a hash-based method has been

proposed [9]. In this method, the similarity of feature vec-

tors is identified whether they have the same hash values.

However, this method still has a problem about the amount

of memory: most bins of the hash table are empty. Accord-

ingly, there is still a room of improving the space efficiency

of this method.

To achieve the breakthrough, we propose a new memory

2133

2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops
978-1-4244-4441-0/09/$25.00 ©2009 IEEE

reduction method with a Bloomier filter [4]. Bloomier filter

is probabilistic data structures that is more space efficient

than hash tables. Similar to hash tables, Bloomier filter

records whether feature vectors are stored in the memory.

Bloomier filter differs from hash tables in that Bloomier fil-

ter allows false positives of feature vectors. The false posi-

tive means that a feature vector is erroneously identified as

a member of a data set. The objective of this research is

to reduce the amount of memory for object recognition by

using a Bloomier filter, while keeping the recognition rate

as high as possible. In this paper, the proposed method is

evaluated based on experiments of planar and 3D specific

object recognition in comparison to a method with a hash

table.

2. Related Work
An important issue of specific object recognition based

on local features is how to reduce the amount of mem-

ory for recognition. Some conventional memory reduc-

tion methods, especially based either on vector quantiza-

tion [14, 16, 19] or on scalar quantization [10], have been

proposed. The former employs not raw feature vectors,

which means feature vectors as they are, but their vec-

tor quantized version called “visual words” to reduce the

amount of memory. For large scale object recognition, high

accuracy of object recognition is achieved only with a large

number of visual words, each of which represents a few fea-

ture vectors. Since the relation between recognition accu-

racy and the required memory is a trade-off, it is difficult to

reduce the amount of memory with this method while keep-

ing the recognition as high as possible. On the other hand,

the latter is to reduce it by scalar quantization which lim-

its the number of bits for each dimension. This method has

been known that it allows us to reduce the memory without

affecting the accuracy of object recognition. However, the

amount of memory which depends on the number of fea-

ture vectors is also required with this method. From these

reasons, it is necessary to improve memory reduction.

Another approach to the reduction is to use not main

memory but auxiliary storage [5]. The strategy is to store

only the pointers to feature vectors. Although this method is

useful to reduce the memory, it requires a longer processing

time owing to the longer accessing time of auxiliary storage

compared with the main memory.

Besides the methods mentioned above, there is a mem-

ory reduction method by sampling feature vectors [7]. In

this method, feature vectors stored in the database are se-

lected by evaluation of their effectiveness for recognition.

Even with this strategy, the amount of memory is still pro-

portional to the number of feature vectors stored in the

database.

Further memory reduction can be achieved by giving up

storing feature vectors. This means that no distance calcu-

lation is employed for matching feature vectors. A hash-

based method with this approach has been proposed [9]. In

the hash-based method, only the existence of feature vec-

tors is marked in the hash table, and matching of feature

vectors is done by checking the mark. Since there is no fea-

ture vectors stored in the database, a drastic reduction can

be achieved. However, we still have a problem that distri-

bution of the marks are quite uneven; almost all bins in the

hash table are typically empty. Thus there is still a room of

improving the space efficiency.

3. Conventional Method Based on a Hash Ta-
ble

In this section, we explain a conventional method with

a hash table [9]. This method is a base of the proposed

method. The processing of this method is divided two steps:

the step of database construction, i.e., storage of feature vec-

tors in a hash table, and the step of object recognition using

the strategy of voting. In the following section, we explain

the concrete steps of this method.

3.1. Database Construction

The conventional method utilizes feature vectors calcu-

lated by SIFT [13] as the detector of local regions and PCA-

SIFT [8] as their descriptor. The number of dimensions of

feature vectors is 36. For fast access to feature vectors, this

method employs a hash function as follows. Let p be an

original feature vector p = (p1, p2, . . . , p36) obtained by

PCA-SIFT from one of the images called “model images”

for construction of the database. First, in order to index p
in the hash talbe, it is required to convert real-valued fea-

ture vectors into integers. It is achieved by binarizing each

dimension 1:

uj =

{
1 if pj ≥ 0
0 otherwise

(1)

to produce a bit vector u = (u1, u2, . . . , ud) from which

the first d(≤ 36) elements are employed for the indexing.

Next the following hash function

Hindex =

⎛
⎝ d∑

j=1

uj2(j−1)

⎞
⎠ mod Hsize (2)

where Hsize is the size of the hash table is applied to ob-

tain the hash value of p. Then the ID of the object from

which p is extracted is stored in the bin indicated by the

hash value. Multiple vectors with the same hash value are

stored by chaining. If the length of the chain exceeds a pre-

determined threshold c, all entries with the same hash value

are deleted. This is the strategy called “stopword elimina-

tion”. Because these vectors tend to be very similar with

1The median of each dimension of PCA-SIFT is close to 0.

2134

one another, we consider these vectors have little contribu-

tion to object recognition. In iterating the above process, all

feature vectors extracted from model images are stored in

the hash table.

3.2. Object Recognition

Let q be a feature vector called a query vector extracted

a query image. In the conventional method, the elementary

task is to retrieve a set of feature vectors {p} close to q from

the database. Then this method simply votes for the objects

to which all vectors in the set {p} belong. The object with

the maximum number of votes is the result of recognition.

The most important step here is to find the set {p}. A

way is to access the hash table based on the hash value ob-

tained from the query vector. In this case feature vectors

having the same hash value are retrieved. Unfortunately

it is unsatisfactory since variation of the query vector may

change its bit vector, which results in accessing the bin that

may not contain the correct object ID.

In order to ease this problem, the query vector is ex-

panded into several bit vectors to find its corresponding ob-

ject ID. Because the query vector is transformed into the

bit vector using the threshold of 0 for each dimension, the

query vector having values close to 0 at some dimensions

can be converted into bit vectors different from its origi-

nal one. The conventional method simply utilizes the error

range e as a parameter for generating different bit vectors.

For the dimension qj satisfying |qj | ≤ e in the query vector

q = (q1, q2, . . . , qd), the other bit value u′
j = 1− uj is also

utilized to generate bit vectors. This means that the error

of the value is estimated within the range defined by e. For

example, for the query vector q = (3, 59,−12) and e = 5,

two bit vectors (1, 1, 0) and (0, 1, 0) are employed for the

access of the hash table.

Unlimited application of this strategy increases the ex-

panded bit vectors exponentially. In order to avoid this

problem, the conventional method utilizes the limit b of the

number of dimensions for the application. The method ap-

plies the strategy for qj from j = d. If the number of di-

mensions that satisfies the threshold e exceeds the limit b,

those with larger indices are adopted up to the limit. In other

words, the number of expanded bit vectors for a query vec-

tor is at most 2b. For the above example of q with e = 20
and b = 1, two bit vectors (1, 1, 0) and (1, 1, 1) are obtained.

In order to improve efficiency of the recognition pro-

cess, the conventional method employs cascaded recogniz-

ers [11] as shown in Fig. 1. This is based on the observation

that the degree of difficulty for correct recognition depends

on images to be recognized. The step s recognizer, which is

depicted in Fig. 1 as a square with a number from 1 to N ,

is the above mentioned recognizer with b = s − 1. In the

first step, a query image is recognized by using the bit vec-

tor calculated from q with b = 0. If the maximum number

Object ID Object ID Object ID Object ID

DB

Answer

1 2 N-1 N

Q Q Q Q

Figure 1. Cascade of recognizers.

of votes is greater enough than the second one, the object

with the maximum number of votes is the result of recogni-

tion. If not, the recognizer at the next step (with b = 1) is

applied. The cascaded recognizers are characterized by the

property called difference accessibility. This strategy guar-

antees that, even if the final recognizer is employed, it takes

almost the same processing time as the single recognizer

with the value b.

3.3. Problem of the Conventional Method

In the conventional method, it is required that the dimen-

sion d of bit vectors is large enough to achieve high accu-

racy. A larger d causes the exponential growth of the size

of hash table. In the preliminary experiment with a hash

table whose size is Hsize = 2d and 10 million feature vec-

tors calculated by PCA-SIFT, more than 65% bins of the

hash table with d = 24 and more than 96% of them with

d = 28 were empty. From the preliminary experiment, it is

found that this method has a problem of space inefficiency.

To solve this problem, we propose a new memory reduction

method using the Bloomier filter whose space efficiency is

better than that of a hash table.

4. Bloom and Bloomier Filters
In this section, we explain the Bloomier filter [4] and the

Bloom filter [3] which is a base of the Bloomier filter.

4.1. Bloom Filter

The Bloom filter is a space efficient probabilistic data

structure. This is used to memorize whether an element is a

member of a data set. The Bloom filter has some problems

as follows. First, it has a risk of false positives which are a

type of error that an element is erroneously recognized as a

member of a data set. Second, once an element is added to

the set, it cannot be removed. While having these problems,

2135

(200 -305 5 -31)

Feature Vector (Hash Key)

Hash

Function

1

Hash

Function

2

Hash

Function

k

1 4 2

(

0

0

0

0

0)

Hash

Value

1

2

3

4

m

m

bit

Bloom Filter

Before

(

1

1

0

1

0)

1

2

3

4

m

Bloom Filter

After

Figure 2. Overview of the storage of feature vectors to a Bloom

filter.

Bloom filters have a strong advantage that some number of

elements are added to the set without increasing the amount

of memory for storing them. Due to this advantage, the

number of elements which can be stored in Bloom filters is

generally greater than that with other data structures, such

as self-balancing binary search trees and hash tables, with

the same amount of memory. Obviously, the probability of

false positives depends on the number of elements that are

added to the set. Although the Bloom filter has the risk of

false positives, we utilize the space efficiency of the Bloom

filter in order to reduce the amount of memory for storing

feature vectors. In the following, let us explain the way

to store feature vectors to the Bloom filter and to retrieve

feature vectors from it.

Figure 2 shows the overview of the storage. First, an

empty Bloom filter which is a bit array of m bits is pre-

pared and all bits are set to 0. In the following, we call m
(the size of bit array) as “Table Size”. Next, a feature vector

is converted to k hash values using k different hash func-

tions. At this moment, these hash values obtained by the

hash functions are m integers ranging from 1 to m. Each

hash value indicates one of the m array positions. Then, to

add a feature vector, set the bits at all positions indicated by

the hash values to 1.

In the retrieval process, in order to test whether a query

feature vector is a member of the data set, feed it to the k
hash functions to get k array positions. If all bits at these

positions are 1, the query feature vector is regarded as a

member of the data set. If not, in other words some bits at

these positions are 0, the feature vector is not in the data

set. The false positive occurs when all bits are 1 for a query

feature vector which is not a member of the set. The reason

of this false positive is that all bits have accidentally been

set to 1 during the storage of some other feature vectors in

the data set.

4.2. Bloomier Filter

The Bloomier filter is an associative array which can

associate a value with a feature vector by using multiple

Bloom filters. This data structure has the same problems

and advantages that the Bloom filter has. Let us explain

how to associate a value with a feature vector.

In order to make the story simple, let us consider the

case that the values associated by the Bloomier filter are 0

and 1. In this case, we create a pair of Bloom filters X
and Y . The feature vectors whose associated value is 0 are

added to X , and those with 1 are added to Y . To retrieve

the value associated with a query feature vector, we check

both Bloom filters. If the query feature vector is contained

in X and not in Y , the probability that the associated value

is 0 is high and vice versa.

We utilize the Bloomier filter to associate object IDs.

Suppose an object ID is represented by n bits, we prepare

the Bloomier filter consisting of 2n Bloom filters. In other

words, we distinguish 2n objects with the above Bloomier

filter. If we employ the Bloom filter to identify N objects,

the required number of Bloom filters is log2 N .

5. Proposed Method
In this section, we propose a specific object recognition

method using the Bloomier filter. Like the conventional

method mentioned above, we utilize feature vectors calcu-

lated by PCA-SIFT. In the following, first let us show how

to construct the database with the Bloomier filter. Then, we

explain the process of object recognition using them.

5.1. Database Construction

Let X1, X2, . . . , Xn be the Bloom filters whose associ-

ated value is 0 and Y1, Y2, . . . , Yn be those whose associated

value is 1. The Table Size of each Bloom filter is calculated

as:

a × Mg
f [bit] (3)

where Mg
f (f ∈ {1, 2, . . . , n}, g ∈ {0, 1}) is the total num-

ber of feature vectors whose f th bit of object ID is g. a
means how many bits are employed for storing one feature

vector in the database. In the case of Xi, for example, M0
i

means the total number of feature vectors obtained from ob-

jects whose ith bit of object ID is 0. Hence, the Table Size
of Xi is a × M0

i .

2136

The next step of database construction is to store feature

vectors to n Bloom filters in order to associate the object ID.

To make the story simple, we consider the following exam-

ple. Suppose that the object ID 3 is represented as “10”.

Because the first bit of the object ID 3 is 1 and the second

bit is 0, the feature vectors extracted from the object whose

ID is 3 are stored to the Bloom filers Y1 and X2. We explain

more details in the following. First, we convert the feature

vector p into the bit vector u by using the first d(≤ 36) ele-

ments of the feature vector. If the number of feature vectors

converted into the same bit vector exceeds the threshold c,

these feature vectors are rejected to be utilized for database

construction. When the number is less than or equal to c, k
hash functions are applied to obtain k hash values indicat-

ing the array positions. In the proposed method, we employ

8 hash functions produced by [6].

The database is constructed by applying the process

mentioned above to all feature vectors. The amount of

memory for storing feature vectors is less than that with

the conventional method because of the property of the

Bloomier filter.

5.2. Object Recognition

Let us explain the recognition process with the Bloomier

filter. First, in order to decide whether the ith bit(i =
1, 2, . . . , n) of object ID is 0 or 1, both Bloom filters Xi

and Yi are applied to a query feature vector q for testing

whether they contain it. If Xi contains q, the ith bit of ob-

ject ID is 0. On the other hand, if q is contained in Yi, the

ith bit of object ID is 1. From this process applied to all

bits of object ID, we can obtain the object ID for voting.

Finally, the object having the maximum number of votes is

regarded as the result. In the following, let us give a detailed

explanation.

The most important step here is to determine the Bloom

filters which contain a feature vector p close to q. Recall

that a feature vector is converted into a bit vector. Unfortu-

nately, since variation of a query vector may change its bit

vector, Bloom filters which contain p close to q might not

be obtained. To solve this problem, the proposed method

utilizes the error range e as a parameter for generating dif-

ferent bit vectors like the conventional method. In the pro-

posed method, the limit b of the number of dimensions is

also utilized, and the number of dimensions that satisfies

the threshold e exceeds the limit b, those with larger bits

are adopted up to the limit. Then, the proposed method de-

termines whether the i(i = 1, 2, . . . , n)th bit of object ID

is 0 or 1 with the set of bit vectors calculated by applying

the strategy of the expansion of bit vectors. If only Xi(Yi)
contains a query bit vector, the ith bit of object ID is 0(1).

In the case that a query bit vector is not contained in both

Xi and Yi, the proposed method discards the query vector.

On the other hand, there is also a case that a query vector

Figure 3. Examples of 55 3D objects.

Figure 4. Examples of 5,000 planar objects.

is contained in both Xi and Yi. To handle this case, the

proposed method votes for both objects whose ith bit of ob-

ject ID is 0 and 1. However, unlimited application of this

strategy increases the number of votes exponentially. To

solve this problem, the proposed method utilizes the limit

t of the number of bits for the application. After all query

vectors extracted from a query image are evaluated by the

above processing. the object having the maximum number

of votes becomes the result of recognition.

In the proposed method, cascaded recognizers are also

employed in order to improve the efficiency of the recogni-

tion process.

6. Experiments
We have evaluated the proposed method using two

datasets: 55 3D objects and 5,000 planar objects.

6.1. Experimental Setting

The dataset of 55 3D objects was prepared by ourselves

by taking images of 55 objects. Figure 3 shows some ex-

amples. The images were captured by rotating each object

on a turn table in increments of 5 ◦ from frontal view and

the above diagonal 15 ◦, 30 ◦ using the web camera whose

resolution is 640×480. In these images, the images in incre-

ments of 10 ◦(0 ◦, 10 ◦, . . . , 350 ◦) were utilized as model

images. The rest were utilized as query images. The num-

bers of model and query images were both 108 per object.

In total 1.2 million feature vectors were extracted from all

model images.

Next, let us explain the dataset of 5,000 planar objects.

As model images, we have prepared in total 5,000 im-

ages collected using Google image search (the left image

of Fig. 4) and Flickr (the right image of Fig. 4), as well

as images that had been available at the site of PCA-SIFT

(the center of Fig. 4). Images were resized to make their

2137

(a) 90◦ (b) 75◦

(c) 60◦ (d) Part

Figure 5. Example of query images.

longest side less than 640 pixels. The average number of

feature vectors extracted from an image was about 2,000.

The query images were prepared as follows. First, we chose

at random 500 images from the model images and printed

out onto A4 paper. Then these were converted into images

by taking their pictures in four different ways as shown in

Fig. 5. The size of images were reduced to 512×341 pixels

and then PCA-SIFT was applied to extract feature vectors.

About 600 feature vectors were obtained on an average from

an image.

The proposed method was compared to the conventional

method proposed in [9]. Parameters for each method were

set as follows. For both methods, we had four parameters,

i.e., the limit b of the number of dimensions for expansion

of the original bit vector, the length c of hash chains for

deleting feature vectors, the number d of dimensions for in-

dexing feature vectors, and the error range e of a feature

value. The tested ranges were as follows. b = 0, 1, . . . , 10,

c = 1, 2, . . . , 10, d = 24, 28, e = 200. We employed a

computer with AMD Opteron8378 2.4GHz CPU and 128

GB RAM. In the following results, the processing time in-

dicates the average time required for recognition of a single

query image excluding the time for extracting feature vec-

tors.

6.2. Experimental Results for 55 3D objects

First we evaluated the accuracy of recognition and the

processing time required for recognition. We tested the

proposed method by combining the number of bits a(a =
8, 16, 24, 32) and the limit t(t = 1, 2, 3, 4, 5) of the number

of bits of object ID in addition to the parameters mentioned

above. For the conventional method, the size of hash table

was Hsize = 2d. Figures 6 and 7 show the experimental

results with d = 24 and d = 28, respectively. The horizon-

tal and the vertical axes indicate the recognition rate and

the processing time, respectively. From the experimental

 0

 0.5

 1

 1.5

 2

 2.5

 3

 94.5 95 95.5 96 96.5 97 97.5 98 98.5 99 99.5

Ti
m

e[
m

s]

Recognition Rate[%]

Proposed
Conventional

Figure 6. Recognition rate and processing time for 55 3D objects

(d = 24).

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 95 95.5 96 96.5 97 97.5 98 98.5 99 99.5
Ti

m
e[

m
s]

Recognition Rate[%]

Proposed
Conventional

Figure 7. Recognition rate and precessing time for 55 3D objects

(d = 28).

results, we confirmed that the longer processing time was

necessary for the proposed method compared to the conven-

tional method when the same recognition rate was achieved.

This is because the number of times of accessing the hash

tables to decide the object IDs with the proposed method is

larger than that with the conventional method. Object IDs

for voting are decided by accessing the hash table only once

in the conventional method. On the other hand, it is neces-

sary for the proposed method to access 2n hash tables in

order to determine them.

Next we investigated the relation among the recogni-

tion rate, the processing time and the required memory by

changing the parameter c and d which affect the amount of

memory in both the proposed method and the conventional

method. Table 1 shows the experimental results of the max-

imum recognition rate for each d with the proposed method

a = 1 and those with the conventional method. From the

experimental results, it is shown that the space efficiency

with the proposed method was better than that with the con-

ventional method when the similar recognition rates were

obtained.

6.3. Experimental Results for 5,000 Planar Objects

Like the experiment for 55 3D objects, we evaluated the

recognition rate and the processing time. The same tested

2138

Table 1. Recognition rate, processing time and required memory for 55 3D objects.
Method c d Other parameters Recognition rate[%] Required memory[MB] Processing time[ms]

Proposed method
7 24 b = 2, e = 200, t = 1 99.21 72 0.50

10 28 b = 3, e = 200, t = 3 99.45 72 0.50

Conventional method
3 24 b = 2, e = 200 99.11 231 0.09

2 28 b = 3, e = 200 99.31 2199 0.12

Table 2. Recognition rate, processing time and required memory for 5,000 planar objects.
Method c d Other parameters Recognition rate[%] Required memory[MB] Processing time[ms]

Proposed method
10 24 b = 4, e = 200, t = 1 86.50 353 10.94

2 28 b = 6, e = 200, t = 3 94.80 352 5.75

Conventional method
6 24 b = 3, e = 200 91.35 479 0.45

1 28 b = 6, e = 200 94.90 2418 0.59

 0

 5

 10

 15

 20

 25

 30

 35

 40

 70 75 80 85 90 95

Ti
m

e[
m

s]

Recognition Rate[%]

Proposed
Conventional

Figure 8. Recognition rate and processing time for 5,000 planar

objects (d = 24).

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 78 80 82 84 86 88 90 92 94 96

Ti
m

e[
m

s]

Recognition Rate[%]

Proposed
Conventional

Figure 9. Recognition rate and processing time for 5,000 planar

objects (d = 28).

ranges of the parameters and the same size of the hash table

as the previous experiments were employed. Figures 8 and

9 show experimental results with d = 24 and d = 28, re-

spectively. From the experimental results, we obtained the

similar relation between them. In particular with respect to

the results of d = 24, the proposed method was inferior to

the conventional method in the accuracy of recognition. The

reason is as follows. Bit vectors with d = 24 caused many

false positives that deteriorated the recognition accuracy of

the proposed method.

Next we researched the relation among the three mea-

sures like the experiment mentioned in the previous section.

Table 2 shows the results. From the experimental results

with d = 28, the proposed method excelled the conven-

tional method in the space efficiency. The required memory

with d = 24 of the proposed method came close to that

with the conventional method. In the case of d = 24, the

proposed method is inferior to the conventional method in

the sense that the recognition rate is lower though a similar

amount of memory is needed. In the case of d = 28, how-

ever, the advantage of the proposed method is clear. A simi-

lar recognition rate is achieved by using much less memory.

Since the recognition rate is higher for both methods with

d = 28, it can be said that the proposed method is supe-

rior to the conventional method with respect to the memory

requirement, if higher recognition rates are necessary.

Finally, we evaluated the accuracy and the processing

time when the required memory of the proposed method

was almost the same as that of the conventional method.

The proposed method with d = 28, a = 8, 16 was com-

pared with the conventional method with d = 24, Hsize =
224 and with d = 28, Hsize = 224 − 1. For these methods,

the parameter c = 1, 2, . . . , 10 were employed. Addition-

ally, for the proposed method, the parameter t = 1, 2, . . . , 5
were utilized. Figure 10 shows the experimental result.

From the results, we achieved a higher accuracy using the

proposed method. Consequently it can be said that the pro-

posed method is successful to compress the representation

of feature vectors. However, the longer processing time of

the proposed method was required. Thus, the improvement

of the proposed method is necessary to speed up the pro-

cessing time.

Let us summarize the experimental results. We con-

firmed that the processing time of the proposed method is

longer than that of the conventional method. If the recogni-

tion rate of the proposed method is almost the same as that

of the conventional method, we achieve the smaller required

memory using the proposed method. If the required memo-

ries of the proposed method and the conventional method

are almost the same, the proposed method allows us the

higher accuracy of recognition.

2139

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 65 70 75 80 85 90 95

Ti
m

e[
m

s]

Recognition Rate[%]

d

d H

Figure 10. Experimental result with 3 methods.

7. Conclusion

In this paper we have proposed a new memory reduc-

tion method for specific object recognition by using the

Bloomier filter. From experimental results for 55 3D ob-

jects, we achieved the recognition rate over 99% with about

1/3 of the required memory with the conventional method.

Experimental results with 5,000 planar objects show that

about 3/4 of the required memory with the conventional

method allowed us the recognition rate over 94%. From

these results, we confirmed the effectiveness of the pro-

posed method.

Future work is to evaluate the proposed method with

more objects, to logically analyze the required memory of

the proposed method and to compare the required memory

with the method of ”bag of features”.

Acknowledgment

This work was supported in part by the Grant-in-Aid for

Scientific Research (B) (19300062) from Japan Society for

the Promotion of Science (JSPS).

References
[1] A. Andoni and P. Indyk. Near-optimal hashing algorithms for

approximate nearest neighbor in high dimensions. Commun.
ACM, 51(1):117–122, 2008. 1

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and

A. Y. Wu. An optimal algorithm for approximate nearest

neighbor searching fixed dimensions. J. ACM, 45(6):891–

923, 1998. 1

[3] B. H. Bloom. Space/Time Trade-offs in Hash Coding with

Allowable Errors. Commun. ACM, Vol. 13, No. 7, pages 422–

426, 1970. 3

[4] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The

Bloomier Filter: An Efficient Data Structure for Static Sup-

port Lookup Table. In Proc. 15th Annual ACM-SIAM SODA,

pages 30–39, 2004. 2, 3

[5] F. Fraundorfer, H. Stewènius, and D. Nistèr. A Binning

Scheme for Fast Hard Drive Based Image Search. Proc. of
CVPR2007, pages 1–6, 2007. 2

[6] General Purpose Hash Function Algorithms.

http://www.partow.net/programming/
hashfunctions/index.html#RSHashFunction. 5

[7] K. Inoue, H. Miyake, and K. Kise. A memory reduction

method for 3d object recognition based on selection of local

features. Proceedings of Third Korea-Japan Joint Workshop
on Pattern Recognition (KJPR2008), pages 7–8, Nov. 2008.

2

[8] Y. Ke and R. Sukthankar. PCA-SIFT:A more distinctive

representation for local image descriptors. In Proc. of
CVPR2004, Vol. 2, pages 506–513, 2004. 2

[9] K. Kise, K. Noguchi, and M. Iwamura. Simple representa-

tion and approximate search of feature vectors for large-scale

object recognition. Proc. 18th British Machine Vision Con-
ference (BMVC2007), 1:182–191, Sept. 2007. 1, 2, 6

[10] K. Kise, K. Noguchi, and M. Iwamura. Memory Efficient

Recognition of Specific Objects with Local Features. Proc.
of the 19th International Conference of Pattern Recognition
(ICPR2008) WeAT3.1, 2008. 1, 2

[11] K. Kise, K. Noguchi, and M. Iwamura. Robust and Efficient

Recognition of Low-Quality Images by Cascaded Recogniz-

ers with Massive Local Features. In Proc. of 1st IEEE Work-
shop on Emergent Issues in Large Amount of Visual Data,

AW-18-12, 2009. 3

[12] D. Lowe. Local Feature View Clustering for 3D Object

Recognition. In Proc. of CVPR2001, volume 1, pages 682–

688, 2001. 1

[13] D. Lowe. Distinctive Image Features from Scale-Invariant

Keypoints. In International Journal of Computer Vision,
Vol. 60, No. 2, pages 91–110, 2004. 1, 2

[14] D. Nistér and H. Stewénius. Scalable Recognition with a Vo-

cabulary Tree. In Proc. CVPR2006, pages 775–781, 2006. 1,

2

[15] M. Özuysal, M. Calonder, V. Lepetit, and P. Fua. Fast Key-

point Recognition using Random Ferns. IEEE Transctions
on Pattern Analysis and Machine Intelligence, 2009. 1

[16] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman.

Lost in quantization: Improving particular object retrieval in

large scale image databases. In Proc. of CVPR2008, 2008.

1, 2

[17] C. Schmid and R. Mohr. Local grayvalue invariants for im-

age retrieval. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19:530–535, 1997. 1

[18] J. Sivic and A. Zisserman. Video Google: A Text Re-

trieval Approach to Object Matching in Videos. In Proc.
of ICCV2003, pages 1470–1477, 2003. 1

[19] Š. Obdržálek and J. Matas. Sub-linear Indexing for Large

Scale Object Recognition. In British Machine Vision Con-
ference (BMVC), pages 1–10, 2005. 1, 2

[20] L. Yang, R. Jin, R. Sukthankar, and F. Jurie. Unifying

Discriminative Visual Codebook Generation with Classi-

fier Training for Object Category Recognition. In Proc. of
CVPR2008, 2008. 1

2140

