

Real-Time Camera-Based Character Recognition Free from Layout Constraints

M. Iwamura, T. Tsuji, A. Horimatsu, and K. Kise

Real-Time Camera-Based Character Recognition System

DEMO

ApplicationsRecognizes all characters in a scene
and provide useful information only

Voice navigation for visually disabled people

"Push button" is on your right side

Translation service for foreign travelers

Car-free mall

3 Advantages of the First method that realizes Proposed Method three requirements

- 1: Real-time
- Recognizes ~200
 characters/sec
- 2: Robust to perspective distortion
- Recognition accuracy
 is >80% in 45 deg.

Recognizes designed characters and pictograms

3: Layout free

Existing Methods and Problems

1. Real-time recognition capable only for characters in a straight text line Recognizable

2. Can recognize each character in a complex layout with much computational time

Existing Methods vs Proposed Method

- 1. Background
- 2. Overview of the Proposed Method
- 3. Contour Version of Geometric Hashing
- 4. Proposed Method
 - 1. Real-Time Processing
 - 2. Recognition of Separated Characters
 - 3. Pose Estimation
- 5. Experiment
- 6. Conclusion

- Black characters are written on a flat white paper
- All connected components are easily segmented

How to quickly match segmented connected components

Overview of the Proposed Method 2

Affine invariant recognition
 Three corresponding
 to
 2: Perspective

distortion

points help matching

Overview of the Proposed Method 2: Contour Version of Geometric Hashing

Existing method : Geometric Hashing (GH)

Contour Version of GH

Start point of the proposed method

Matching of point arrangement

Matching of Shape

Overview of the Proposed Method 3: Three-Point Arrangements of CVGH

CVGH examines all three points out of P points

Overview of the Proposed Method 3: Three-Point Arrangements of Prop. Method

Proposed method snips useless three-point

- 1. Background
- 2. Overview of the Proposed Method
- 3. Contour Version of Geometric Hashing
- 4. Proposed Method
 - 1. Real-Time Processing
 - 2. Recognition of Separated Characters
 - 3. Pose Estimation
- 5. Experiment
- 6. Conclusion

Contour Version of GH: Matching by Feature Vectors

- Calculation of feature vector
 - 1. Normalize
- 2. Divide into subregions
- 3. Create a histogram of black pixel

Feature Vector

4x4 Mesh Feature

Contour Version of GH: Storage

Feature vectors are stored in the hash table

Contour Version of GH: Recognition

- 1. Calculate feature vectors
- 2. Cast votes

- 1. Background
- 2. Overview of the Proposed Method
- 3. Contour Version of Geometric Hashing
- 4. Proposed Method
 - 1. Real-Time Processing
 - 2. Recognition of Separated Characters
 - 3. Pose Estimation
- 5. Experiment
- 6. Conclusion

Proposed Method 1: Real-Time Processing by Affine Invariant

Area ratio
 Usual usage
 Three-point arrangement - Area ratio

Proposed Method 1: Real-Time Processing by Affine Invariant

Area ratio

- Unusual usage
- ► Two-point arrangement + Area ratio → Third point

Proposed Method 1: How to Select Three Points

▶ ★ 1st point: Centroid (Affine Invariant)

- 2nd point: Arbitrary point out of P points
- ▶★3rd point: Determined by the area ratio

- 1. Background
- 2. Overview of the Proposed Method
- 3. Contour Version of Geometric Hashing
- 4. Proposed Method
 - 1. Real-Time Processing
 - 2. Recognition of Separated Characters
 - 3. Pose Estimation
- 5. Experiment
- 6. Conclusion

Proposed Method 2: Recognition of Separated Characters

Create a separated character table for post processing

- 1. Background
- 2. Overview of the Proposed Method
- 3. Contour Version of Geometric Hashing

4. Proposed Method

- 1. Real-Time Processing of CVGH
- 2. Recognition of Separated Characters
- 3. Pose Estimation
- 5. Experiment
- 6. Conclusion

- 1. Background
- 2. Overview of the Proposed Method
- 3. Contour Version of Geometric Hashing
- 4. Proposed Method
 - 1. Real-Time Processing
 - 2. Recognition of Separated Characters
 - 3. Pose Estimation
- 5. Experiment
- 6. Conclusion

Experiment: Recognition Target 3 Fonts 236 Chars

Experiment: Recognition Target

Captured from three different angles

- A server was used
 - CPU: AMD Opteron 2.6GHz

Experiment: Conditions

- Some characters are difficult to distinguish under affine distortions
 - → Characters in a cell were treated as the same class

000	Ww
69	Хх
Сс	NZZ
	рd
Ss	qb
un	7 L V v

Experiment: Recognition Result

Achieved high recognition rates and high speed by changing a control parameter

180-210 characters/sec

Settings	High recognition rates		High speed			
Angle (deg.)	0	30	45	0	30	45
Time (ms)	7990	7990	7020	1300	1260	1140
Recog. Rate (%)	94.9	90.7	86.4	86.9	81.8	76.3
Reject. Rate (%)	0.4	3.0	6.4	6.4	9.3	16.5
Error Rate (%)	4.7	6.4	7.2	6.8	8.9	7.2

- 1. Background
- 2. Overview of the Proposed Method
- 3. Contour Version of Geometric Hashing
- 4. Proposed Method
 - 1. Real-Time Processing
 - 2. Recognition of Separated Characters
 - 3. Pose Estimation
- 5. Experiment
- 6. Conclusion

Real-Time Camera-Based Character Recognition System

Future Work

- Recognition of Chinese characters
- Improvement of segmentation for
 - Broken connected components
 - Colored characters

Real-Time Camera-Based Recognition of Characters and Pictograms

M. Iwamura, T. Tsuji, A. Horimatsu, and K. Kise