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Abstract

The recognition rate of the typical nonparametric
method “k-nearest neighbor rule (kNN)” is degraded
when the dimensionality of feature vectors is large. For
reducing this difficulty, Mitani and Hamamoto have
proposed a simple and strong classifier that outputs the
class of a test sample by measuring the distance be-
tween the test sample and the average patterns, which
are calculated usingk-nearest neighbors belonging to
each class. On the other hand, it is well known that
distance-weightedkNN can improve its error rate due
to robustness against outliers. Hence we propose a
distance-weighted Mitani’s classifier for improving er-
ror rates. In addition, we show how to apply kernel
methods to our method. The performance of those
methods is verified by experiments with handwritten
digit patterns and binary classification problems.

1 Introduction

The nonparametric method of pattern recognition
namedk-nearest neighbor rule (kNN) is implemented
on many pattern recognition systems because of its
good performance and simple algorithm. ThekNN rule
determines the class of a test sample by voting ofk-
closest training samples. The main drawback inkNN is
that recognition rates deteriorate when the dimension-
ality of feature vectors is large [1]. For overcoming
this drawback, Mitani and Hamamoto have proposed
the classifier that outputs the class of a test sample by
measuring the distance between the test sample and the
average patterns, which are calculated usingk-nearest
neighbors belonging to individual classes [2]. Hottaet
al. have verified by experiments that this classifier in
many cases outperformed other classifiers such askNN
and linear subspace methods [3]. In this paper, we term

the Mitani’s method aCAPclassifier (classification us-
ing Categorical Average Patterns).

On the other hand, Dudani has presented the outline
of distance-weightedkNN (WkNN). That is, training
samples with smaller distance from a test sample are
voted more heavily than ones with larger distance [4].
The WkNN rule can in some cases outperform an un-
weightedkNN rule when the size of training sets is
finite [5]. According to this fact, it is expected that we
can improve the recognition rates of CAP if we apply
weighting-functions to CAP.

This paper presents a classifier that outputs the class
of a test sample by measuring the distance between the
test sample and the weighted average patterns, which
are calculated using the categoricalk-nearest neigh-
bors and their distance values. In addition, we show
how to apply kernel methods to the proposed classi-
fier. The performance of those methods is verified by
experiments with handwritten digit patterns and binary
classification problems.

2 Classification Using Weighted Categor-
ical Average Patterns

Before presenting the proposed method, we review
a CAP classifier (i.e., Mitani’s classifier) [2, 3] and
WkNN [4].

2.1 CAP classifier

First, the procedure of CAP is explained intuitively.
Figure 1 illustrates a test sample and its five nearest
training samples of each class (only classes 3, 5 and 8
are shown). The CAP classifier computes the average
patterns of thek-nearest neighbors for each class (see
the rightmost in Figure 1). In this case, all weights of
k-nearest neighbors are the same value1/k = 1/5. As
shown in the rightmost in Figure 1, it seems that the

111



Figure 1. Outline of a CAP classifier: The
top pattern is a test sample and its five
nearest training samples are shown from
the second row to bottom (only classes
3, 5 and 8 are shown). At the rightmost
column are the average patterns of each
class.

average pattern of class 5 is similar to the test sample,
but other average patterns are not. In fact, ifk was
more than1 the distance value between the test sam-
ple and the average pattern of class 5 was smallest, and
the distance values of classes 3 and 8 were never less
than that of class 5 [3]. Consequently, the CAP classi-
fier exploits distance between a test sample and average
patterns of each class for classification.

Next, the CAP classifier is formulated. Letxj
i =

[xj
i1, ..., x

j
id]

T (i = 1, ..., Nj) be the d-dimensional
training sample belonging to a classj, whereNj is
the number of training samples belonging to a classj.
When a test sampleq = [q1, ..., qd]T is given, the class
of the test sample (denoted byω) is determined by

ω = arg min
j





∥∥∥∥∥∥
1
k

∑

i∈Xj

xj
i − q

∥∥∥∥∥∥

2




, (1)

whereXj is the set of thek-nearest training samples
which belong to a classj. The following relationship
is established between the individual samples ofXj :

‖xj
1 − q‖ ≤ ‖xj

2 − q‖ ≤ ... ≤ ‖xj
k − q‖. (2)

In short, the class that minimizes the distance between
its average pattern (

∑
i∈Xj

xj
i/k) and the test sample

q is outputted as the class of the test sample. Note
that CAP coincides with a nearest neighbor rule and a

minimum distance method whenk = 1 andk = Nj ,
respectively. The main shortcoming of CAP is that
neighbors with large distance values deteriorate the av-
erage patterns when the value ofk is large. This is
attributed to the fact that all weights ofk-nearest sam-
ples are equal to1/k independently of their distance
values. Actually, the error rates of CAP increase when
the value ofk is larger than the optimal one [3].

2.2 Distance-WeightedkNN rule

Next, we explain about the outline of the Distance-
WeightedkNN rule (WkNN). Let wi be the weight of
the ith nearest samples. The WkNN rule determines
the weightwi by using a function of distance between
the test sample and theith nearest neighbor i.e., sam-
ples with smaller distance are weighted more heavily
than ones with larger distance. Dudani has proposed
the following simple function that scales weights lin-
early [4]:

wi =





1 if dk = d1

dk − di

dk − d1
if dk 6= d1

(3)

wheredi is the distance to the test sample of theith
nearest neighbor, andd1 anddk indicate the distance
of the nearest neighbor and the farthest (kth) neighbor
respectively. Dudani has further proposed aninverse
distance weightingfunction

wi =
{

1
di

if di 6= 0 (4)

and arank weightingfunction

wi = k − i + 1. (5)

These weights are used as the value of one vote in the
WkNN rule [4], but we use these functions for com-
puting the weights ofk-nearest samples belonging to
individual classes.

3 Distance-Weighted CAP classifier

For overcoming the difficulty found on a CAP clas-
sifier, we employ the idea of WkNN to modify the
weights ofk-nearest samples. Letwj

i be a weight of
theith nearest samples of a classj. First, thek-nearest
samples of a test sampleq are extracted from each
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class by usingdj
i = ‖xj

i − q‖. Next, the weightwj
i

is calculated by one of the above weighting-functions
(e.g. wj

i = 1/dj
i ). Then the weight is normalized by

wj
i = wj

i /
∑k

l=1 wj
l for computing the weighted aver-

age pattern of a classj. Finally, the proposed method
determines the class of a test sample by the following
classification rule:

ω = arg min
j





∥∥∥∥∥∥
∑

i∈Xj

wj
i x

j
i − q

∥∥∥∥∥∥

2




. (6)

In this paper, we term this methodWCAP(classifica-
tion using Weighted Categorical Average Patterns).

3.1 Kernel WCAP

In recent years much research has been conducted
on a kernel method (e.g. [6, 7]), to which WCAP de-
scribed above can be applied. If we define appropri-
ate kernel functions between structured data such as a
tree or a graph, WCAP can be applied to such struc-
tured data. In addition, if we can use kernelized WCAP,
recognition rates will be improved by using an appro-
priate kernel function for a specific problem. There-
fore, kernelization is necessary for general use of clas-
sifiers. When a test sampleq is given, the kernelized
WCAP rule determines the class of the test sample by

ω = arg min
j





∥∥∥∥∥∥
∑

i∈Xj

wj
i Φ(xj

i )− Φ(q)

∥∥∥∥∥∥

2




, (7)

where Φ(·) is a mapping function that maps sam-
ples from an input space to a high-dimensional space,
andXj is the set of thek-nearest training samples in
high-dimensional space that belong to a classj. We
can represent an inner product in the high-dimensional
space〈Φ(x), Φ(y)〉 by an appropriate Mercer kernel
K(x, y), so the squared Euclidean distance between
the test sampleq and the training samplexj

i in the
high-dimensional space is written as

dj
i = ‖Φ(xj

i )− Φ(q)‖

=
√
〈Φ(xj

i ),Φ(xj
i )〉 − 2〈Φ(xj

i ), Φ(q)〉+ 〈Φ(q),Φ(q)〉

=
√

K(xj
i ,x

j
i )− 2K(xj

i , q) + K(q, q). (8)

In the same way, Equation (7) can be expanded as
∥∥∥∥∥∥

∑

i∈Xj

wj
i Φ(xj

i )− Φ(q)

∥∥∥∥∥∥

2

=
∑

l,m∈Xj

wj
l w

j
mK(xj

l ,x
j
m)− 2

∑

i∈Xj

wj
i K(xj

i , q)

+ K(q, q). (9)

Hence, the class that minimizes the above equation
value is outputted as the class of the test sample. In this
paper, we term this methodKWCAP(Kernel WCAP).

4 Experiments

4.1 Experimental results on handwritten digit
data

We first have done experiments with the handwritten
digit datasets MNIST [8] and USPS [9]. The MNIST
dataset consists of 60,000 training and 10,000 test im-
ages. The USPS dataset consists of 7,291 training and
2,007 test images. It is well known that the USPS
dataset is more difficult to recognize than MNIST be-
cause USPS consists of little and mislabeled training
samples. For feature extraction, we extractedlocal
stroke directionfeature [10]. The local stroke direc-
tion technique divides each digit pattern into a8 × 8
grid and assigns each pixel the direction (vertical, hor-
izontal, diagonal right, and diagonal left) of the vector
that covers the maximum number of consecutive black
pixels. The numbers of pixels in each grid cell that are
assigned each direction are output. This feature set rep-
resents each digit pattern as a 256 dimensional vector.
We show an example of local stroke feature description
in Figure 2. In addition, we use the Gaussian kernel as
a kernel function in experiments:

K(xj
i , q) = e−α‖xj

i − q‖2 . (10)

4.1.1 Influence of weighting-functions on error
rates

First, the influence of weighting-functions on error
rates of WCAP was examined by using the MNIST
dataset. Figure 3 and Figure 4 show the results of test
and training error rates on each weighting-function, re-
spectively. The results of KWCAP are not included in
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Figure 2. Example of local stroke direc-
tion feature.
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Figure 3. The test error rates of WCAP on
each weighting-function.

these figures, because they were almost same as those
of WCAP. As shown in Figure 3, the test error rate ob-
tained by Equation (3) was lower than those of Equa-
tion (4) and Equation (5) in most range ofk. On the
other hand, as shown in Figure 4, the training error
rates obtained by Equation (3) and Equation (4) were
equal to zero in most range ofk. Hence we exploit
Equation (3) for computing the weights of nearest sam-
ples in future experiments, which gives the lowest error
rates on both test and training samples.

4.1.2 Influence of parameterk on error rates

Next, we investigated the relationship between param-
eterk and error rates by using the MNIST dataset. Fig-
ure 5 shows the results ofkNN, CAP and WCAP. The
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Figure 4. The training error rates of WCAP
on each weighting-function.
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Figure 5. Relationship between k and er-
ror rates.

result of KWCAP is not included in this figure, because
it was almost same as that of WCAP. As shown in this
figure, the error rates ofkNN against test and training
samples increased ask increased. In contrast, the test
errors of CAP and WCAP decreased whilek was less
than or equal to about 15. Note that the test error rate
of WCAP was almost flat whilek was more than 15.
In contrast, the test error rate of CAP slightly increased
after k = 15. In addition, the training error rate of
WCAP was equal to zero in most range ofk, but that
of CAP increased ask increased.

On the other hand, Figure 6 shows the cross-
validation (leave-one-out method) curve of CAP and
WCAP for the MNIST dataset. As shown in this fig-
ure, the estimated error rates of WCAP was almost flat
while k was greater than 15. In contrast, the estimated
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Figure 6. Cross-validation curves of CAP
and WCAP on the MNIST dataset.

Table 1. Error Rates on MNIST

method test [%] training [%]
kNN (k = 5) 2.39 1.43

WkNN (k = 11) 2.12 0.12
CLAFIC (k = 30) 3.68 3.87

SVM (α = 180, C = 10) 0.92 0.01
CAP (k = 11) 1.28 0.50

KCAP (k = 11, α = 70) 1.27 0.37
WCAP (k = 15) 1.21 0

KWCAP (k = 15, α = 70) 1.21 0

error rate of CAP increased afterk=10. Similarly, the
estimated error rate ofkNN increased drastically af-
ter k=1. Hence selection ofk on WCAP is easier than
those onkNN and CAP. According to these results, it is
thought that advantages of WCAP are obtained by us-
ing weighting-functions that are for robustness against
outliers.

4.2 Experimental results on benchmark
datasets

4.2.1 Comparison with other classifiers

Table 1 shows the lowest error rates on MNIST with
parameter values ofeach classifier: kNN, WkNN
with Equation (3), the basic linear subspace method
CLAFIC [11], Support Vector Machine (SVM) with
the Gaussian kernel, CAP, Kernel CAP (KCAP) [3],
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Figure 7. Cross-validation curves of CAP
and WCAP on the USPS dataset.

Table 2. Error Rates on USPS

method test [%] training [%]
kNN (k = 1) 5.2 0

WkNN (k = 5) 4.73 0
CLAFIC (k = 15) 4.73 1.71

SVM (α = 260, C = 3) 3.69 0.03
CAP (k = 12) 3.54 0.59

KCAP (k = 12, α = 130) 3.44 0.43
WCAP (k = 14) 3.44 0.03

KWCAP (k = 16, α = 130) 3.34 0.03

WCAP and KWCAP. The parameterk in CLAFIC in-
dicates the dimensionality of subspaces. The parame-
terα indicates the scale parameter of the Gaussian ker-
nel (see Equation (10)). The parameterC in SVM in-
dicates the soft margin constant. For SVM, we used
the SVM package,LIBSVM [12]. As shown in Ta-
ble 1, SVM outperformed all the other investigated
techniques, and the test error rates of WCAP and KW-
CAP were lower than those ofkNN, WkNN, CLAFIC,
CAP and KCAP.

Table 2 shows the lowest error rates on USPS with
parameter values of each classifier. As shown in this
table, the proposed methods WCAP and KWCAP out-
performed the other classifiers even if the number of
training samples is small and training set contains mis-
labeled samples. Figure 7 shows the cross-validation
(leave-one-out method) curve of CAP and WCAP for
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Table 3. Confusion matrix of SVM on USPS.

class 0 class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9
class 0 352 0 2 0 2 1 1 0 1 0
class 1 0 257 0 0 5 0 2 0 0 0
class 2 3 0 190 1 2 0 0 1 1 0
class 3 0 0 3 153 1 8 0 0 1 0
class 4 0 1 2 0 192 0 1 1 0 3
class 5 2 1 1 1 0 154 0 0 0 1
class 6 1 1 1 0 3 0 164 0 0 0
class 7 0 1 1 0 6 0 0 138 1 0
class 8 2 1 1 0 1 1 0 0 158 2
class 9 0 0 0 0 1 0 0 0 1 175

Table 4. Confusion matrix of WCAP on USPS.

class 0 class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9
class 0 355 0 2 0 0 1 1 0 0 0
class 1 0 257 0 0 5 0 2 0 0 0
class 2 0 0 193 3 0 0 0 1 1 0
class 3 2 0 2 148 0 13 0 0 1 0
class 4 0 2 3 0 190 1 0 0 0 4
class 5 2 1 1 1 0 152 0 0 2 1
class 6 1 0 0 0 1 0 168 0 0 0
class 7 0 1 1 0 3 0 0 141 1 0
class 8 2 2 1 1 0 2 0 0 158 0
class 9 0 0 0 0 0 0 0 1 1 175

the USPS dataset. As shown in this figure, the param-
eterk that obtained minimum estimated error rates of
WCAP was almost equal to the optimal value on test
samples. In contrast, the parameterk that obtained the
minimum estimated error rate of CAP was smaller than
the optimal one. Hence selection ofk on WCAP is eas-
ier than those onkNN and CAP even if the number of
training samples is small.

4.2.2 Confusion matrix on USPS

Next, we show confusion matrices of SVM and WCAP
for visualization performance of each classifier. Ta-
ble 3 and Table 4 present confusion matrices of SVM
and WCAP on USPS, respectively. Each column of
matrices represents predicted classes, while each row
represents actual classes. As shown these tables, the
number of combination of mislabeling of SVM is 42,

but that of WCAP is 35 even if the difference of the
number of misclassified patterns is 4. In other words,
WCAP is confusing two classes less than SVM. This
property is desired one for improving accuracy of clas-
sifiers.

4.2.3 Experimental results on binary classification
problems

Finally we tested the proposed method on 13 bench-
mark datasets of binary classification problems [13,
14]. Each benchmark consists of 100 (or 20) random
partitions of data for form test and training sets. Ta-
ble 5 (see the last page) shows the lowest average test
error rates and its standard deviations ofeach classi-
fier: kNN, WkNN, CAP, KCAP, WCAP and KWCAP.
Table 6 shows parameters of each classifier optimized
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on test error rates1. For comparison with other classi-
fiers, see [13, 14]. The lowest average error rates are
shown in boldface type, and the second ones are shown
in italic type. As shown in this table, the results of CAP
and WCAP were better than those ofkNN and WkNN
in some cases. In addition, the results of KCAP and
KWCAP were better than those of CAP and WCAP in
many cases. That is, the use of kernel method helped
improve performance of CAP and WCAP.

5 Conclusions

This paper has presented the algorithm of Weighted-
CAP (WCAP) that outputs the class of a test sample by
measuring the distance between the test sample and the
weighted average patterns, which are calculated using
categoricalk-nearest neighbors and their distance val-
ues. The weighting-functions that were proposed by
Dudani were used for reducing the influence of sam-
ples with large distance on average patterns. In ad-
dition, we showed how to apply kernel methods to
WCAP for improving the recognition performance. It
was verified by experiments that WCAP was often su-
perior to un-weighted CAP and kernel methods helped
improve the recognition performance of WCAP.

In short, the proposed method includes the follow-
ing advantages: 1) The proposed methods can achieve
lower error rates than other nonparametric methods
such askNN, subspace methods and a un-weighted
CAP classifier. 2) The proposed method can achieve
low error rates even if the dimensionality of feature
vectors is large. Hence, it is possible to improve recog-
nition rates by employing kernel methods to WCAP. 3)
We can implement CAP and KCAP easily because of
its simple algorithms. 4) There is no need to recon-
struct systems when samples are added. Future work
will include speeding up and theoretical explanation of
the proposed method.

Acknowledgments This research was supported by
the Ministry of Education, Culture, Sports, Science and
Technology in Japan under a Grant-in-Aid for Scien-
tific Research C (No. 17500115).

1These parameters should be estimated by using a statistic esti-
mator such as a cross-validation method. In this paper, however, their
values were determined simply by using a rough searching.
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Table 5. Error rates [%] and its standard deviations

dataset # of dimension kNN WkNN CAP WCAP KCAP KWCAP
Banana 2 11.3± 0.6 11.0± 0.5 11.8± 0.5 11.4± 0.6 10 .7 ± 0 .5 10.6± 0.4

B. Cancer 9 25 .3 ± 4 .0 25.0± 3.9 26.5± 4.5 26.0± 4.5 25.9± 4.4 25.9± 4.5
Diabetes 8 25.1± 1.7 25.1± 1.8 24.5± 1.8 24.5± 1.7 23.7± 1.9 24 .3 ± 1 .6
German 20 25.2± 2.3 24.8± 2.5 24.6± 2.3 24.3± 2.1 24.4± 2.5 24.2± 2.0
Heart 13 15.7± 3.3 16.1± 3.4 15 .9 ± 3 .4 17.3± 3.3 16.1± 3.5 17.3± 3.3
Image 18 3.4± 0.5 3.4± 0.5 3.3± 0.6 3.1± 0.5 3.3± 0.6 3.1± 0.5

Ringnorm 20 35.0± 1.4 35.0± 1.4 12.0± 0.8 12.4± 1.0 1.4± 0.1 1 .6 ± 0 .1
F. Sonar 9 34.8± 1.9 34.8± 1.8 34.4± 1.7 34.8± 1.6 34.4± 1.7 34.8± 1.6
Splice 60 26.2± 2.1 24.9± 2.3 13.5± 0.8 12 .6 ± 0 .8 12.9± 0.7 12.5± 0.9

Thyroid 5 4.4± 2.2 4.4± 2.2 4.4± 2.2 4.4± 2.2 4 .2 ± 2 .1 4.0± 2.3
Titanic 3 22.8± 1.1 22.8± 0.7 23.1± 1.9 22 .7 ± 1 .3 22.8± 1.5 22.5± 1.7

Twonorm 20 2.5± 0.2 2.5± 0.2 2.4± 0.1 2.4± 0.1 2.4± 0.1 2.4± 0.1
Waveform 21 10.7± 1.0 10.4± 1.1 10 .2 ± 0 .5 10.3± 0.5 9.9± 0.6 10.3± 0.4

# of boldface 1 1 2 3 5 7
# of Italics 1 0 2 3 2 2

Table 6. Parameter values on each classifier.

kNN WkNN CAP WCAP KCAP KWCAP
dataset k k k k k α k α
Banana 11 23 8 14 15 1.4 16 0.8

B. Cancer 17 39 27 50 27 0.09 50 0.007
Diabetes 35 40 102 62 102 0.5 104 0.05
German 13 33 44 48 42 0.05 59 0.005
Heart 35 47 68 60 67 10−4 60 10−4

Image 1 1 2 3 2 10−4 3 10−4

Ringnorm 1 1 4 7 93 0.1 15 1.4
F. Sonar 37 269 254 205 246 10−3 205 10−3

Splice 9 20 92 193 92 0.01 202 10−3

Thyroid 1 1 1 1 9 1 4 0.25
Titanic 25 24 22 29 22 0.5 29 0.05

Twonorm 95 167 114 128 177 0.1 177 0.1
Waveform 41 83 36 50 40 0.05 41 0.05
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